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a b s t r a c t

The human brain is a network system in which brain regions, as network nodes, con-
stantly interact with each other. The directional effect exerted by one brain component
on another is referred to as directional connectivity. Since the brain is also a continuous
time dynamic system, it is natural to use ordinary differential equations (ODEs) to model
directional connections among brain regions. The authors propose a high-dimensional
ODE model to explore directional connectivity among many small brain regions recorded
by intracranial EEG (iEEG). The new ODE model, motivated by the physical mechanism
of the damped harmonic oscillator, is effective for approximating neural oscillation, a
rhythmic or repetitive neural activity involved in many important brain functions. To
produce scientifically meaningful network results, a cluster structure is assumed for the
ODE model parameters that quantify directional connectivity among regions. The cluster
structure is in line with the functional specialization of the human brain; the brain
areas specialized in the same function tend to be in the same cluster. Two Bayesian
methods are developed to estimate the model parameters of the proposed ODE model
and to identify clusters of strongly connected brain regions. The proposed ODE model
and Bayesian method are applied to iEEG data collected from a patient with medically
intractable epilepsy and used to examine the patient’s brain networks before the seizure
onset.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The human brain is a network system, where brain regions, as network nodes, constantly interact with each other. The
directional effect exerted by one brain region over another is referred to as directional connectivity and corresponds to
a network edge in the brain network. Identifying connected brain regions and mapping the human brain network help
us understand the mechanism of the brain as well as its normal and abnormal functions. In this article, we model the
directional connectivity of the human brain and identify connected brain regions using intracranial electrocorticography
(iEEG) data, multivariate time series measurements of many regions’ neuronal activities.

iEEG uses multiple electrodes placed on the exposed surface of the human brain (inside the skull) to record neuronal
activities of many small brain regions. Fig. 1(a) shows the placement of iEEG electrodes on the exposed brain of an epileptic
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Fig. 1. (a) Spatial placement of a subdural grid and several strip electrodes on the patient’s left hemisphere. The acronyms IF, SF, ST, AD, MD, PD,
and G stand for inferior frontal, superior frontal, superior temporal, anterior depth, medial depth, posterior depth, and grid electrodes. The strips
in black and white are depth electrodes used to record activity from deeper brain structures close to the hippocampus. (b) Illustration of a short
segment of two iEEG time series of two regions.

patient under study. The acronyms IF, SF, ST, AD, MD, PD, and G stand for inferior frontal, superior frontal, superior
temporal, anterior depth, medial depth, posterior depth, and grid electrodes. Fig. 1(b) illustrates two iEEG time series
recorded in two regions, respectively. iEEG data have two unique properties. First, each iEEG electrode directly records
the neuronal electrical activity in one small region (about 10 mm in diameter) at a millisecond scale. As such, iEEG data
have high spatial and temporal resolutions. Second, iEEG produces highly reliable and reproducible measurements of brain
activity with a strong signal-to-noise ratio (SNR, Cervenka et al., 2013). As such, iEEG data are ideal for examining the
brain network.

The human brain is also a continuous-time dynamic system, in which each brain region’s activity depends on other
regions’ activities. It is biophysically natural to use ordinary differential equations (ODEs) to describe the dynamic
mechanism of the brain and use model parameters to quantify directional connectivity among brain regions. The most
popular ODE model for the brain’s directional connectivity is the dynamic causal modeling (DCM, Daunizeau et al., 2011;
David and Friston, 2003; David et al., 2006; Kiebel et al., 2006; Friston et al., 2003), which characterizes directional
connectivity among only a few large regions (usually no more than 5) based on functional magnetic resonance imaging
(fMRI) and EEG data. The formulation of the DCM is highly complex and relies on the prior knowledge of the existence
and directionality of the connections among the regions under study. Since iEEG typically records neuronal activities of
more than 50 small regions, among which the relationship is unknown, it is difficult to scale the DCM to iEEG data in
terms of both computation and model building.

We develop a new high-dimensional ODE model for iEEG data to characterize directional connectivity among many
regions (more than 50 at least). The new model has two advantages. First, the new model, as an extension of a
biophysical model called damped harmonic oscillator (DHO, Serway and Jewett, 2003), characterizes the brain regions’
oscillatory activity—periodic or rhythmic up-and-down temporal behavior of the neuronal activity. The oscillation is an
important feature of any time series data measuring the neural activity of local areas of the brain (Fell and Axmacher,
2011; Fries, 2005; Schnitzler and Gross, 2005). Fig. 1(b) shows two brain regions’ oscillatory activity recorded by iEEG.
Second, to address the difficulty in specifying the complex interactive relationship among many regions, we use a linear
approximation to model the complex mechanism of the high-dimensional brain system, an idea similar to the linear
regression. As such, the new model combines the strengths of statistical modeling and scientific modeling: The model
captures the major oscillatory feature of the brain through extending a physical oscillatory system to the high-dimension
brain system and uses a statistical model formulation to provide the model flexibility. We refer to the new model as the
oscillatory dynamic directional model (ODDM) (details of the model construction are provided in Section 2).

As a high-dimensional ODE model, the ODDM contains many free parameters for quantifying directional connectivity
among many regions recorded by iEEG. We use a prior knowledge of brain networks to increase estimation efficiency of
ODDM parameters. Specifically, we impose a cluster structure, also called the modularity, on the ODDM parameters. The
cluster structure, consisting of several functionally independent subnetworks of lower dimensions, provides an intuitive
interpretation of functional specialization of brain regions in different modules/clusters. Moreover, the cluster structure
has been widely reported in the literature on brain networks (Milo et al., 2002, 2004; Newman, 2006; Sporns, 2011),
and has attracted much attention in researching the brain’s functional organization. As such, the proposed model leads
to scientifically meaningful network results. We refer to the ODDM with the cluster structure as the modular ODDM
(MODDM).



T. Zhang, Y. Sun, H. Li et al. / Computational Statistics and Data Analysis 144 (2020) 106847 3

The MODDM, like many other statistical models, is an approximation of the complex system under study, and thus,
has a discrepancy from the underlying true mechanism of the brain. As the model uncertainty quantification is natural
within the Bayesian framework, we develop Bayesian methods to estimate the model parameters of the MODDM while
accounting for the discrepancy between the MODDM and the underlying true brain system. The quantification of the
ODE model discrepancy has rarely been addressed in the literature. As such, this paper not only addresses a pressing
need for statistical modeling of the biophysical mechanism of the brain but also introduces a new approach to inferring
high-dimensional ODE models with many free parameters.

The rest of the manuscript is organized as follows. Section 2 introduces the MODDM. In Section 3, we present two
Bayesian hierarchical methods to estimate the MODDM based on basis representation of brain regions’ state functions
and a Markov chain Monte Carlo (MCMC) algorithm to make posterior inference. We present simulation studies of the
proposed Bayesian method in comparison with existing network methods in Section 4, and apply the MODDM to analyze
a real iEEG study in Section 5. Section 6 discusses analysis results and future research directions.

2. ODE models for iEEG data

Let y(t) = (y1(t), . . . , yd(t))′ be the observed iEEG measurements of d regions at time t and x(t) = (x1(t), . . . , xd(t))′ be
the neuronal state functions of the d brain regions at time t . Since each iEEG electrode directly records one brain region’s
neuronal electrical activity, we assume the following observation model that links observed data y(t) to the underlying
states x(t):

y(t) = x(t) + ϵ(t), (1)

where ϵ(t) = (ϵ1(t), . . . , ϵd(t))′ is a d-dimensional vector of measurement errors with mean zeros. The observed data,
y(t), are measured at discrete time points t = 1, 2, . . . , T .

Since brain regions interact with each other through neuron firing, the model for the brain’s directional activity is
constructed at the regions’ neuronal level, i.e., for x(t). Existing high-dimensional ODE models for a dynamic system with
many interactive components, including the first-order linear or bilinear ODEs (Zhang et al., 2015, 2017) and several other
first-order ODEs (Chen and Wu, 2008; Lu et al., 2011; Wu et al., 2014a,b), do not accommodate oscillatory activity of the
system. To address this limitation, we propose to use the damped harmonic oscillator (DHO, Serway and Jewett, 2003), a
one-dimensional oscillatory physical system, to build our model for x(t).

2.1. Oscillatory dynamic directional model (ODDM)

The DHO is a one-dimensional second-order ODE given by

d2z(t)
dt2

= F (t) + A z(t) + G
dz(t)
dt

,

where z(t) is the state or the spatial location of a one-dimensional system (called oscillator) at time t , and the parameters
A and G determine the oscillator’s oscillation amplitude and period (see Chapter 2 in Fitzpatrick, 2013, for detailed
explanation). Simple one-dimensional oscillatory systems described by the DHO include a spring/mass system and
pendulum. Fig. 2(a) shows temporal activities of three DHOs with F (t) = 0 and different combines of parameters A
and G, which lead to different frequencies of the time series.

Because of its physical implication, the DHO has been used extensively in biophysics (Schuster, 1983) and neuro-
science (Daunizeau et al., 2011; David and Friston, 2003; David et al., 2006; Friston et al., 2003; Kiebel et al., 2006) to
describe dynamic systems with oscillatory mechanisms. However, the DHO in these applications is for describing specific
systems, but difficult to apply to other systems.

We extend the one-dimensional DHO to the high-dimensional brain system consisting of many interactive brain
regions. Specifically, we model d brain regions under study as a set of interactive oscillators – each corresponding to
one region – influenced by the effect exerted by others. For region i,

d2xi(t)
dt2

= Fi(x(t)) + Aii xi(t) + Gi
dxi(t)
dt

, (2)

where Fi(x(t)) is the directional effect exerted by other regions on region i, and parameters Aii and Gi determine region
i’s oscillation amplitude and period.

The functions Fi(x(t)), i = 1, . . . , d, represent the directional connectivity among d regions and are difficult to specify
due to the limited understanding of the brain’s biophysical mechanism. To address this issue and also to reduce the model
complexity, we use a first-order Taylor expansion,

∑d
j̸=i Aij ·xj(t)+Di, to approximate the complex function Fi(x(t)), which

leads to the following model:

d2xi(t)
dt2

= Di +

d∑
j̸=i

Aij · xj(t) + Aii · xi(t) + Gi
dxi(t)
dt

, (3)
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Fig. 2. Simulated time series.

where Di is the intercept in the first order Taylor approximation of Fi(x(t)) and Aij represents the directional effect exerted
by xj(t) on xi(t).

The model formulation (3) brings three benefits in practice. First, the second-order ODEs have a physical foundation
and are suitable for characterizing the brain’s oscillatory activity. Second, this simple form provides a flexible way to
model directional connectivity among different brain regions, because each model parameter Aij denotes the directional
effect exerted by region j on region i. Third, the linear form facilitates fast computation for high-dimensional data with a
large d.

The state model (3) together with the observation model (1) is referred to as the oscillatory dynamic directional model
(ODDM). Model parameters A = {Aij, i = 1, . . . , d, j = 1, . . . , d}, G = {Gi, i = 1, . . . , d}, and D = {Di, i = 1, . . . , d} are
unknown and to be estimated based on the observed time series y(t), t = 1, . . . , T .

Note that the ODDM is not an extension of the first-order ODE model to second-order ones despite their mathematical
similarity. Second-order ODEs have several different formulations. For example, a comprehensive second-order linear
ODE model should include all possible first-order derivatives, dxj(t)

dt , j = 1, . . . , d. We do not include those terms because
the ensuing model no longer has a direct physical interpretation. In short, the formulation of the ODDM stems from its
integration of statistical modeling and scientific modeling rather than first-order linear ODEs.

Under the ODDM, inference about directional connectivity among the d regions is equivalent to estimating parameters
A, and mapping the brain’s directional network is equivalent to identifying statistically significant nonzero Aijs. Note that
because the two directional effects between each pair of regions i and j are characterized by two separate parameters,
Aij and Aji, the proposed method indeed produces separate estimates of the directional effects in two directions. As such,
the total number of parameters for quantifying directional connections among d regions is d2. This is different from many
association studies (Kramer et al., 2008, 2010, 2012; Mormann et al., 2005; Netoff and Schiff, 2002; Schiff et al., 2005;
Schindler et al., 2010, 2008, 2007; Wendling et al., 1996; Wu and Gotman, 1998) in which only one parameter is used to
characterize the association relationship, i.e., functional connectivity, between each pair of regions.

2.2. Modular oscillatory dynamic directional model for sparse brain networks

For a high-dimensional brain system with a large d, estimates of many ODDM parameters can be unstable and
have large variances. To improve estimation efficiency of the ODDM, we assume that many parameters Aijs are zero.
A motivation for sparsity lies in the established idea that directional connections are energy consuming (Anderson, 2005;
Földiák and Young, 1995; Olshausen and Field, 2004), and biological systems tend to minimize energy consuming activ-
ities (Bullmore and Sporns, 2009; Micheloyannis, 2012). Among different sparse network structures, we are particularly
interested in the cluster structure, which consists of several functionally independent clusters. Connections among regions
in the same cluster are dense. The cluster structure has been widely reported in the literature on brain networks (Milo
et al., 2002, 2004; Newman, 2006; Sporns, 2011).

To characterize the cluster structure, we introduce cluster labels m = {m1,m2, . . . ,md}, which take integer values from
1 to d, to denote the clusters of the d brain regions. As such, the brain network can have at most d clusters, each consisting
of one region only. We use indicators γijs, which take values 1 or 0, to distinguish significant directional connectivity from
zero one. We propose the following ODE model, as an extension of the ODDM (3), for the sparse brain network in the
cluster structure:

d2xi(t)
dt2

=

d∑
j=1

δ(mi,mj) · γij · Aij · xj(t) + Di + Gi
dxi(t)
dt

, (4)

where the delta function δ(mi,mj) equals 1 if mi = mj and 0 otherwise. Model (4) implies that a directional effect from
region j onto region i is nonzero, if and only if the two regions fall into the same module and the associated indicator γij
is nonzero.
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Model (4) with the observation model (1) is referred to as the modular oscillatory dynamic directional model (MODDM).
To illustrate the MODDM, we generated x(t) from a dynamic system with two clusters. The regions in the same cluster are
all pairwise connected. Fig. 2(b) shows x(t)s of three regions in one cluster and Fig. 2(c) shows x(t)s in the other cluster.
The MODDM produces oscillatory state functions.

3. BayesIan estimation methods for MODDM

Under the MODDM, the focus is on identifying clusters and selecting network edges corresponding to nonzero γijs. We
develop two Bayesian methods to estimate these parameters.

Two types of approaches are proposed for estimating ODE models in the literature: discretization methods which
numerically fit x(t) based on the assumed ODE model (Bard, 1974; Biegler et al., 1986; Campbell, 2007; Cao et al., 2012;
Gelman et al., 1996; Girolami, 2008; Hemker, 1972; Huang et al., 2006; Huang and Wu, 2006; Li et al., 2005; Matteij
and Molenaar, 2002; Xue et al., 2010) and basis-function-expansion approaches which represent x(t) with functional
bases (Bhaumik and Ghosal, 2014; Brunel, 2008; Deuflhard and Bornemann, 2000; Poyton et al., 2006; Qi and Zhao, 2010;
Ramsay and Silverman, 2005; Ramsay et al., 2007; Varah, 1982). We take the latter approach as it accounts for the model
error, as explained in detail below.

The authors (Ramsay et al., 2007) used third-order B-spline bases to represent the state functions that follow first-order
ODE models. In this article, since the second-order derivatives of x(t) are smooth, we represent state functions x(t) with
fifth-order B-spline basis functions, b(t) = (b1(t), . . . , bL(t))′, defined on an equally spaced partition {t1 = 1, t2, . . . , tq =

T } (where L = q + 5 − 2) of the interval [1, T ]:

xi(t) = η̃′

i b(t), (5)

where η̃i = (ηi1, . . . , ηiL)′ is the vector of the basis coefficients of xi(t).
As in Ramsay (2006), we chose the number of basis functions L comparable to the number of data points T for enough

flexibility to fit functional curves. We have tried three different numbers of L: L = [T ], L = [T/2], and L = [T/3] and found
that the three numbers lead to similar fitted x(t) and similar accuracy in selecting connected regions by the proposed
approach. Following Ruppert (2002), we used the generalized cross-validation to determine L and got L = [T/3].

We assume the data measurement error ϵi(t) in (1) independent and identically distributed with a normal distribution
with mean zero and unknown variance σ 2. As such,

yi(t) ∼ N(xi(t), σ 2
i ). (6)

We show in the simulation study that because of the strong SNR of the data, the proposed method is robust to violations
of the model assumptions for ϵi(t). Next, we assign to basis coefficients a prior, also a prior distribution for x(t).

Model for basis coefficients/state functions. Let η = {η̃i, i = 1, . . . , d}, γ = {γij, i, j = 1, . . . , d} and θ = {A,D,G}.
Further, denote all the MODDM parameters by ΘI = {A,D,G,m, γ}. We propose a model for basis coefficients η that is
conditional on ΘI through the MODDM model-fitting errors:

p(η|ΘI , τ)∝ exp
{
−

d∑
i=1

Ri(η,ΘI )
2τi

}
, (7)

where τ = (τ1, . . . , τd)′ are positive hyperparameters. Ri(η,ΘI ) is the model-fitting error for region i’s state function with
the form

Ri(η,ΘI ) =

∫ T

0

(
d2xi(t)
dt2

−

d∑
j=1

δ(mi,mj) · γij · Aij · xj(t) − Di − Gi ·
dxi(t)
dt

)2

dt.

In the above equation, all state functions and their derivatives are represented by basis functions: xi(t) = η̃′

i b(t),
dxi(t)/dt = η̃′

i b
(1)(t), and d2xi(t)/dt2 = η̃′

i b
(2)(t).

The distribution (7) for η, with a form of the exponential of the negative model-fitting errors, has an intuitive
explanation. The hyperparameters τis are the variances of the model-fitting errors for different regions’ temporal activities.
The probability (7) provides a generating model for the basis coefficients η and the state functions x(t) based on the given
MODDM. The probability allows for the deviation of the state functions from the MODDM. Moreover, the formulation of
the distribution (7), equivalent to a normal distribution for η, as explained below, leads to normal posterior conditional
distributions of model parameters θ = {A,D,G}, which are easy to simulate.

With the linear basis representation for x(t) in (5),
∑d

i=1 Ri(η,ΘI )/(2τi) given ΘI and τ is quadratic of η:

d∑
i=1

Ri(η,ΘI )/(2τi) = η′ ΩΘI ,τ η − 2Λ′

ΘI ,τ
η + ΞΘI ,τ, (8)
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where ΩΘI ,τ , ΛΘI ,τ , and ΞΘI ,τ are a dL×dL matrix, a dL×1 vector, and a scalar, respectively, and their formulas depending
on ΘI and τ are provided in Appendix. Thus, the probability model (7) is a multivariate normal distribution

η|ΘI , τ ∼ MN(Ω−1
ΘI ,τ

ΛΘI ,τ,Ω
−1
ΘI ,τ

).

This means that the state functions follow a Gaussian process centered at the MODDM with variability controlled by τ.

Prior specification for MODDM parameters. We propose the following joint prior for ΘI = {A,D,G,m, γ}, similar to
the prior used for ODE model parameters by Zhang et al. (2017):

p(ΘI |τ) ∝ det(ΩΘI ,τ)
−1/2

· exp
{
1
2
(Λ′

ΘI ,τ
Ω

−1
ΘI ,τ

ΛΘI ,τ − ΞΘI ,τ)
}

· exp

⎧⎨⎩−µ

d∑
i,j=1

δ(mi,mj)

⎫⎬⎭ (9)

·p
∑

i,j γij
0 · (1 − p0)d

2
−
∑

i,j γij ·

d∏
i,j=1

φ

(
Aij

ξ0

)
·

d∏
i=1

φ

(
Gi

ξ0

)
·

d∏
i=1

φ

(
Di

ξ0

)
where φ(·) is the standard normal density, ξ0 is a large constant to give an almost flat prior for A, G, and D, µ is a
nonnegative constant and p0 is a given prior probability. We let µ = 0 to give a non-informative prior for the cluster
structure and let p0 = 0.9 to impose the prior belief that within-module connections are dense. We have tried different
values for p0 and found that setting p0 = 0.9 produced the highest true positive rate in selecting network edges. This is
because a large value of p0 effectively reflects the prior information that the connections within clusters are dense and
facilitate the cluster identification, while smaller p0 leads to lower selection accuracy.

Prior for variances of model fitting errors. A commonly used non-informative prior for variance parameters τ (Gelman
et al., 2014) is p(τ) ∝

∏d
i=1 1/τi. However, this prior leads to an improper posterior. Thus, we propose the following prior

for τ, which is close to the non-informative prior yet leads to a proper posterior:

p(τ) ∝

d∏
i=1

(
1
τi
)
3
2 . (10)

Joint posterior distribution. Let Y = {y(t), t = 1, . . . , T } and σ = {σ 2
1 , . . . , σ 2

d }. The model (6) together with priors in
(7), (9) and (10) defines a hierarchical Bayesian model for the MODDM. The joint posterior distribution is

p(ΘI , τ, η, σ|Y) ∝ p(Y|η, σ) · p(σ) · p(η|ΘI , τ) · p(ΘI |τ) · p(τ), (11)

where p(σ) ∝
∏d

i=1 1/σ
2
i , is a uninformative prior for σ 2

i .

3.1. The second Bayesian method

Standard approaches simulate from the posterior distribution p(ΘI , τ, η, σ|Y) and estimate the state functions x(t) and
ODE parameters jointly within the Bayesian framework (Zhang et al., 2017). However, in the problem under study, we
focus on the posterior inference of parameters ΘI only, while η contributes to most parameters in the Bayesian model
(11). In addition, since iEEG data are smooth with a strong SNR (Cervenka et al., 2013), estimated xi(t)s by a nonparametric
smoothing method (Ramsay, 2006) are similar to those from the Bayesian model (11). Considering this, we propose to
first fit x(t) based on the observed data Y, and use a Bayesian method to estimate MODDM parameters based on the fitted
x(t), i.e., the estimated η. We elaborate the details in the following.

We first estimate η by minimizing∑
i=1

T∑
t=1

(yi(t) − xi(t))2 + λ

d∑
i=1

∫ T

1

(
x(2)i (t)

)2
dt,

where xi(t) is given by (5), x(2)i (t) = η̃′

i b(2)(t), and the smoothing penalty parameter λ is chosen by the generalized
cross-validation (Härdle, 1990).

Next, we treat estimated η as the observed data with the likelihood (7). As such, (7), (9) and (10) define the second
hierarchical Bayesian model for the MODDM, and the ensuing joint posterior distribution of ΘI is

p(ΘI , τ|η) ∝ p(η|ΘI , τ) · p(ΘI |τ) · p(τ). (12)

We refer to the Bayesian model with the posterior (11) as the full Bayesian method, and the model with the posterior
(12) as the Bayesian smoothing method hereafter.
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3.2. Posterior inference

We use a partially collapsed Gibbs Sampler (PCGS; van Dyk and Park, 2008) to sample from the posterior distributions
p(ΘI , τ, η, σ|Y) and p(ΘI , τ|η). The posterior sampling steps of the two distributions are similar while the former takes
at least three times more computational time than the latter. We present the Markov chain Monte Carlo (MCMC) steps
of the latter in Appendix.

Let ς (s) be the sth MCMC simulation of the MODDM parameter ς for s = 1, . . . , S, where S is the total number of MCMC
iterations excluding the burn-in time. We use Gelman–Rubin statistics (Gelman et al., 2014) to examine the convergence
of the MCMC outputs.

Two posterior quantities of particular interest are the posterior clustering probability and the network edge selection
probability. The former is the posterior probability that two regions, i and j, are in the same cluster, which is estimated
by P̂m

ij =
1
S

∑S
s=1 δ(m(s)

i ,m(s)
j ), i, j = 1, . . . , d. The latter is the posterior probability that the directional connection from

region i to region j is nonzero and is estimated by P̂γ

ij =
1
S

∑S
s=1 δ(m(s)

i ,m(s)
j ) · γ

(s)
ij , i, j = 1, . . . , d.

Given a threshold h̄m for P̂m
ij , we put the pair of brain regions (i, j) with P̂m

ij > h̄m in the same cluster and group brain
regions into different clusters accordingly. Based on the identified clusters, we use network edge selection probabilities,
P̂γ

ij , to select the directional network edge (from j to i) if P̂γ

ij > h̄γ for a given threshold h̄γ for P̂γ

ij .

Choice of thresholds. We propose to use the false discovery rate (FDR) to determine the thresholds for posterior
probabilities. To evaluate the FDR, we develop a method to approximate the null distributions of P̂m

ij s and P̂γ

ij s under
the null hypothesis that none of the regions are connected. We first generate the data, denoted by Y0, that satisfies the
null. Given long multivariate time-series data, we divide them into short segments of the same length T . We randomly
sample the time segment of each region with the pairwise distance between any two regions’ segments greater than
10T . All the segments combined create Y0 (of the same size as Y). The posterior probabilities {P̂m0

ij , i, j = 1, . . . , d} and
{P̂γ0

ij , i, j = 1, . . . , d} based on Y0 give the empirical null distributions of P̂m
ij and P̂γ

ij , respectively. Based on these null
distributions, we evaluate the significance levels of P̂m

ij and P̂γ

ij for every pair of regions i and j and determine the thresholds
corresponding to 5% FDR using the method by Benjamini and Hochberg (1995) and Efron and Tibshirani (2002).

3.3. Computational time

The computational time of the ODE model estimation depends on the dimension of the system d, the length of time
points T , the number of clusters K and the number of regions in the largest cluster. If the number of regions in each cluster
is roughly the same, the computational time of the proposed Bayesian method is O(T ·

d4

K2 ). We reduce this computation
time to O(T ·

d3
K ) by using parallel computing (Caffo et al., 2011; Suchard et al., 2010). It generally takes 15 min for 5000

iterations of the proposed MCMC algorithm to finish analyzing time series of 50 regions.

4. Simulation study

We consider a 50-dimensional dynamic system (d = 50) that has 3 clusters of size 15, 15, and 20. We first generated
xi(t), i = 1, . . . , 50, from the MODDM (4). For simplicity, we let the components within the same cluster be all pairwise
connected and let Di = 0 and xi(0) = 1 for all i. Within each cluster l, l = 1, 2, 3, we let Aii = al, Ai i+1 = (−1)i · bl, and
Gi = cl for region i in cluster l. The rest of Aijs were simulated from a standard normal. We chose different values for al, bl
and cl in different clusters so that the three clusters have different oscillatory features. Specifically, a1 = −3.6, b1 = 2.2,
and c1 = −20 for the first cluster; a2 = −7.1, b2 = 8.2, and c2 = −15 for the second cluster; and a3 = −4, b3 = 1.8, and
c3 = −4 for the third cluster. We simulated 50 time series ϵ(t) from an AR(1) model with lag-1 autocorrelation equaling
0.5 and median pairwise spatial correlations between regions equaling 0.2 (the median spatial correlation of real data is
no more than 0.2). We chose the variances of ϵ(t) such that the SNR of each time series – defined as var(xi(t))/var(ϵi(t))
– equals 20, which is far below SNRs of typical iEEG data (Zhang et al., 2015) (the median SNR of real iEEG data is above
100). Finally, we obtained yi(t) as the sum of xi(t) and ϵi(t).

We independently simulated 100 multivariate time series from the same model. For each simulated data set, we first
standardized every time series yi(t), i = 1, . . . , 50, to mean zero and norm 1 and applied the developed Bayesian approach
to the data. We calculated the true positive rates (TPR) and false positive rates (FPR) of the proposed method using
different thresholds for P̂m

ij · P̂γ

ij . TPR is the percentage of the network edges with P̂m
ij · P̂γ

ij above the threshold among all
true network edges; FPR is the percentage of the network edges with P̂m

ij · P̂γ

ij above the threshold among all void network
edges. Table 1 presents the summaries of areas under the ROC curve (AUC) for 100 simulations. The result indicates that
the proposed method is robust to violation of model assumptions and can consistently detect connected regions with
high accuracy.

We present analysis results of one simulated Y with an AUC 0.9508 (close to but slightly lower than the median
0.9531) in Fig. 3. Fig. 3(a) shows three representative time series yi(t), each from one unique cluster. Fig. 3(b) shows the
posterior clustering probabilities P̂m

ij estimated by the Bayesian smoothing method. From the figure, we see that P̂m
ij s for
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Table 1
Summaries of AUC for 100 replicates.
Min Q1 Median Q3 Max Standard deviation

0.9244 0.9453 0.9531 0.9595 0.9658 0.01

Fig. 3. 3(a) Simulated three time series from three different clusters. 3(b) Posterior clustering probabilities P̂m
ij for i, j = 1, . . . , 50 of the Bayesian

smoothing method. 3(c) The ROC curve of network edge selection by the full Bayesian approach and the Bayesian smoothing approach using the
number of basis functions L = [T ] and L = [T/3]. 3(d) Network edges with 5% FDR for P̂m

ij and P̂γ

ij . Nodes in the same color of either dark blue, light
blue, and yellow correspond to components in the same cluster identified by the Bayesian smoothing method. Nodes in black correspond to regions
identified to be disconnected from other regions. 3(e) The matrix of the absolute correlations of the simulated data. 3(f) The ROC curves of the
network edge selection based on the first-order ODE model MIDDM, correlations and partial correlations of the simulated data. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

the regions truly in the same clusters are consistently greater than P̂m
ij s for the regions in different clusters. This also

demonstrates that P̂m
ij is a good measure used for clustering regions. Fig. 3(c) shows the ROC curves (pairs of TPRs and

FPRs for different thresholds) for the full Bayesian method and the Bayesian smooth method using the number of bases
L = [T ] and L = [T/3]. The figure indicates that the network estimation by the two Bayesian approaches with different
numbers of basis functions are similar and the proposed method is able to select network edges with a high TPR and
low FPR. Fig. 3(d) shows the directional network edges selected using 5% FDR for P̂m

ij s and P̂γ

ij s estimated by the Bayesian
smoothing method. The nodes in the same color of either dark blue, light blue, and yellow correspond to components
identified to be in the same cluster. The nodes in black correspond to components identified to be disconnected from
other regions. The proposed method can identify three clusters.

For comparison, we applied the existing first-order ODE model, called the modular and indicator-based dynamic
directional model (MIDDM) (Zhang et al., 2015, 2017), to the data. As shown in Fig. 3(f), the MIDDM gave mediocre results
with an AUC of 0.57, indicating that the first-order ODEs are unable to capture connectivity among regions with oscillatory
activities. Furthermore, we compared with network methods based on correlations and partial correlations. Fig. 3(e) shows
the matrix of the absolute correlations of the simulated data. The calculated pairwise correlations of the regions truly in
the same clusters are not consistently large as expected despite their time series have similar oscillatory frequencies.
Fig. 3(f) shows the ROC curves of network edge selection by using different thresholds for the correlations (with an AUC
of 0.82) and partial correlations (with an AUC of 0.69). Despite similar oscillatory frequencies of the time series within the
same cluster, their correlations can still be small. Thus, the proposed method outperforms the correlation-based methods.

We also evaluated the mean estimation error for the estimated parameters:
∑

ij(Aij − Âij)2/d2, which is 1.46. For
comparison, we evaluated the mean estimation error by MIDDM, which is 1.48. We believe that the large estimation
errors are due to the short time series and the many parameters in the model for quantifying directional connectivity. In
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practice, the network edge selection is of more interest than model parameter estimation, because the proposed model
is an approximation of the underlying complex system and the detected network edges provide valuable information of
the existence of directional connections among regions. We showed that the network edge selection by the proposed
Bayesian method has high accuracy.

5. An epileptic iEEG study

5.1. Data description

The iEEG data under study were collected from a right-handed female adult with medically intractable epilepsy, prior
to her brain surgery for seizure treatment. Use of de-identified data was approved by the University of Virginia IRB.

The iEEG recordings of the subject were obtained from 18 chronically implanted depth and 76 subdural electrodes
with 10 mm inter-electrode spacing, over the patient’s left hemisphere, as shown in Fig. 1(a). The acronyms IF, SF, ST,
AD, MD, PD, and G stand for inferior frontal, superior frontal, superior temporal, anterior depth, medial depth, posterior
depth, and grid electrodes. The iEEG signals were sampled at 200 Hz filtered with a band pass range of 1–70 Hz. An
additional notch filter was used to filter out 60 Hz interference. The electrodes G07 and G08 were used as ground and
reference electrodes, so they were excluded from the analysis. We included in the analysis additional two voltage time
series collected from electrodes placed on the chest. These electrodes pick up the signals generated by cardiac muscles,
also known as electrocardiogram (EKG). As such, 94 time series were analyzed. For convenience, we associate the two
EKG time series with the electrodes G07 and G08 when plotting brain networks.

The subject’ brain activity was recorded continuously for over 9 days. In total, iEEG captured four seizures from a
single seizure onset zone (SOZ, the brain region where seizures start) G44, which is over supersylvian frontoparietal
cortex. Because epileptic activity originating from a single SOZ is the simplest case to study, and G44 was a major SOZ,
we evaluated the epileptic patient’s brain networks before seizures onset at G44.

5.2. Data analysis

We focus on iEEG data 10 s before seizure onset times at the region G44. Following Burns et al. (2014), we divided
iEEG time series into segments of 1-second length and applied the MODDM to each segment independently. We selected
the directional network edges using the FDR of 5% so that the ensuring networks have sparse edges and are scientifically
interpretable.

Figs. 4(a) and 4(b) show brain networks before seizure onsets of the 2nd and 3rd recorded seizures, respectively.
Nodes in black correspond to brain regions that are disconnected from other regions, and nodes in blue correspond to
brain regions in the same cluster. Directional network edges in gray indicate directional connections among regions in
the same cluster. Based on the analysis results of 1-second segments around seizure onsets, we found that brain regions
within the temporal lobe, including electrodes G50–G54, G58–G62, AD03–AD06, MD03–MD06, ST03–ST04, and PD03–
PD06, are constantly connected with each other. Moreover, the SOZ G44 tended to be disconnected from other regions
around seizure onset times.

The brain network results based on 1-second segments have large variability, most likely due to the limited data (200
time points for each segment) and the enormous model parameters to be estimated. To get stable network results, we
combine data information across seizures by taking the average of posterior probabilities across 4 seizures and selecting
network edges by using the FDR of 5% for average posterior probabilities. As such, we obtained 20 average brain networks
within 10 s of seizure onsets (one average for each 1-second). As an illustration, Figs. 4(c) and 4(d) show the average
networks at 1 s and 9 s before seizure onset, respectively.

Based on average network results, we found that (1) brain regions in the temporal lobe had the strongest connections
with each other, and (2) the SOZ G44 was disconnected from the rest of the regions, including its neighboring regions,
around the seizure onset times. The result of isolated SOZ from the rest of regions around seizure onset is in line with
the prior network research by Burns et al. (2014), Nissen et al. (2016) and Warren et al. (2010). We believe that the
unique connectivity property of the SOZ detected by the proposed method will be helpful for clinicians to locate the SOZ
in practice, which will be the focus of the future research.

To demonstrate that the proposed MODDM for iEEG data can better characterize the brain’s oscillatory activity than
the existing first-order ODE model MIDDM (Zhang et al., 2017), we used the posterior estimates (posterior medians) of
the model parameters to regenerate the state functions, which was the same approach used in the simulation study. Fig. 5
shows the regenerated x̂(t) by the MIDDM and MODDM, in comparison to the observed data Y(t). The state functions from
the MIDDM are linear over time, thus, having zero oscillatory frequencies. In contrast, the MODDM provides a substantially
better fit to the oscillatory patterns of Y(t).
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Fig. 4. 4(a) The brain network at 1 s before the 2nd seizure onset. 4(b) The brain network at 2 s before the 3rd seizure onset. 4(c) and 4(d) The
average networks across 4 seizures at 1 s and 9 s before seizure onset, respectively. Nodes in black correspond to the regions that are isolated from
the rest regions and form a cluster having only one region. Nodes in blue correspond to the regions in the same cluster. The directional network
edges in gray are for the pairs of regions in the same cluster with their network edges selected with the FDR of 5%.

Fig. 5. Regenerated x̂(t) using the posterior estimates of MODDM and MIDDM parameters for regions G1, G42 and G44.

6. Discussion

We have developed a new ODE model, MODDM, for directional connectivity among many brain regions recorded
by iEEG. The MODDM incorporates a physical mechanism (i.e., damped harmonic oscillator) to characterize the brain’s
oscillation, and uses a linear form to approximate the underlying directional interactions among regions. As such, the
MODDM combines the strengths of scientific modeling and statistical modeling. We have shown through both simulation
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study and real data analysis that the new model outperforms the existing ODE model by providing a substantially better
fit to multivariate oscillatory iEEG data and detecting connected regions with much higher accuracy. We applied the
developed model and Bayesian method to an epileptic patient’s iEEG data and examined the patient’s brain network.
The analysis results revealed that the SOZ tends to be disconnected from other regions in the brain network around the
time of seizure onset. This unique connectivity property of the SOZ can be used to identify the SOZ among many regions
recorded by iEEG. Our method has a great potential to enhance understanding of epileptic brain networks, increase the
accuracy in SOZ localization, and ultimately improve epilepsy diagnosis and treatment.

The use of the first-order Taylor expansion to approximate a complex function Fi in Eq. (2) is similar to the linear
regression. In many complicated high-dimensional situations, the true underlying model is almost impossible to specify.
The linear regression does not explain all possible variation of the response variable, but acts as a useful working model
for explaining the relationship between the response and predictors, identifying useful predictors, and predicting the
response variable. For the same reasons, our ODE model as well as many other linear ODE models in the literature (Chen
and Wu, 2008; Xue et al., 2010; Lu et al., 2011; Wu et al., 2014a; Zhang et al., 2015, 2017) uses the first-order Taylor
expansion to approximate the underlying complex dynamic system.

Despite that MODDM provides a much better fit to the oscillatory time series data than existing network mod-
els/methods, there remains data variation that the MODDM cannot explain. There are possibly two reasons. First, the
MODDM is an approximation of the brain system whose dynamic mechanism is highly complex and mostly unknown.
In the literature, the existing ODE models that can fit the brain data well all deal with low-dimensional data and usually
use more ODEs than the number of time series to fit the data. We here deal with a significantly more challenging
problem: building an ODE model that is in the same high dimension as the number of time series/regions to explain all
the regions’ activities. Consequently, there is a considerable discrepancy between the MODDM and the true underlying
system. Second, like linear regressions, the use of linear expansion in the MODDM to approximate the underlying system
is effective only for a short period. We, therefore, applied the MODDM to short data segments independently. With
limited data information, the model parameter estimates also have large variances. As shown in Simulation Study, even
if the assumed MODDM is a true model, the estimated model parameters cannot reproduce exactly the underlying state
functions. Because of these reasons, the traditional evaluation of the model fitting to the data may not be appropriate for
the problem under study. Nonetheless, we have shown through both simulation and real data analysis that the MODDM
has much better efficiency in detecting connected brain regions than the existing ODE model for iEEG data. Research is
greatly needed to develop highly efficient statistical models and methods to provide a better fit to high-dimensional brain
data.

The MODDM assumes no connection between modules and is focused on within-module connections only. The within-
module connections tend to be short-range, strong, and dense, while between-module connections are long-range and
sparse (Park and Friston, 2013). Thus, it is easier to detect within-module connections, and the MODDM is suitable for iEEG
data that are usually collected from spatially close regions. Nevertheless, we can extend the MODDM to accommodate
long-range connections by introducing additional indicators for between-module connections. Under this new model,
each network edge can be either within-module or between-module connection. These two types of connections may
have different densities and play different functional roles in the brain network. The within-module connections are
those between the regions with a similar function while the between-module connections ensure integration among
regions specializing in different functions. Differentiating, modeling, and estimating within-module and between-module
directional connectivity will be an important topic in the future research.
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Appendix A. Technical details for PCGS algorithm to sample from the posterior distribution

A.1. Derive the joint posterior distribution p (m, γ, τ|η)

In the following, we use p (θ |−) to denote the full posterior conditional distribution of θ . Based on the formulation of
the joint distribution (12), given the rest of the parameters, {Aij,Di,Gi, j = 1, . . . , d} are independent for i = 1, . . . , d, so
we will first derive the posterior conditional distribution of {Aij,Di,Gi, j = 1, . . . , d}.

We use M[, I] to denote the submatrix consisting of columns indexed by I of M, and M[I, ] to denote the submatrix
consisting of rows indexed by I of M. Let Gi = {j, δ(mi,mj) · γij ̸= 0 and j = 1, . . . , d}. Define a d × d diagonal matrix
Ii where diagonal entries corresponding to Gi equal 1, and the rest diagonal entries equal 0. Let Zi(t) = Ii x(t), and
Λi(t) =

(
Zi(t)′, 1, dxi(t)/dt

)′
=
(
Zi(t)′, 1, η̃′

i b
(1)(t)

)′
, so Zi(t) and Λi(t) are vectors whose elements are functions of time

t . Also, we let θi = (A[i, Gi],Di,Gi)′. Since

p (A[i, ],Di,Gi|−) ∝ exp

{
−

1
2τi

∫ T

0

(
Λi (t) θi −

d2xi (t)
dt2

)2

dt

}
·

d∏
j=1

φ

(
Aij

ξ0

)
· φ

(
Di

ξ0

)
· φ

(
Gi

ξ0

)
,
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where d2xi (t) /dt2 = η̃′

ib
(2)(t). After integrating out Aij corresponding to zero indicator values in the above equation, we

have

p (θi|−) ∝ exp
{
−

1
2
θ′

i

(
1
τi

∫ T

0
Λi (t) Λ′

i (t) dt +
1
ξ 2
0
I
)

θi +
1
τi

∫ T

0

d2xi (t)
dt2

Λ′

i (t) dt θi

}
· exp

{
−

1
2τi

∫ T

0

(
d2xi (t)
dt2

)2

dt

}
, (13)

where I denotes an identity matrix.
Let Mi =

1
τi

∫ T
0 Λ′

i (t) Λi (t) dt +
1
ξ20
I and Vi =

1
τi

∫ T
0

d2xi(t)
dt2

· Λ′

i (t) dt . Based on Eq. (13), the posterior joint distribution
after integrating out A, D, and G is

p (m, γ, τ|η) ∝

d∏
i=1

det (Mi)
−1/2

· exp

{
d∑

i=1

V′

iM
−1
i Vi

2

}
· exp

{
−

d∑
i=1

∫ T

0

1
2τi

(
d2xi (t)
dt2

)2

dt

}

· exp

⎧⎨⎩−µ

d∑
i,j=1

δ
(
mi,mj

)⎫⎬⎭ · p
∑

i,j γij
0 · (1 − p0)d

2
−
∑

i,j γij .

From the above equation, we have p (m, γ|τ, η) ∝ J (m, γ, τ, η), where

J (m, γ, τ, η) =

d∏
i=1

det (Mi)
−1/2

· exp

⎧⎨⎩
d∑

i=1

V′

iM
−1
i Vi

2
− µ

d∑
i,j=1

δ
(
mi,mj

)⎫⎬⎭ · p
∑

i,j γij
0 · (1 − p0)d

2
−
∑

i,j γij .

A.2. Sequentially simulate mi from p (mi|m−i, γ, τ, η) for i = 1, . . . , d

Let V−i be the set of distinct values in m−i, and v−i be any positive integer smaller than d + 1 and not belonging to
V−i. Then the posterior conditional distribution of mi is discrete and has a support of {V−i, v−i}. In addition, for each
z ∈ {V−i, v−i},

p (mi = z|m−i, γ, τ, η) ∝ J (mi = z,m−i, γ, τ, η) .

A.3. Sequentially simulate γijs from p
(
γij|m, γ−ij, τ, η

)
for i, j = 1, . . . , d

Given parameter values m, γ−ij, τ and η, γij for i, j = 1, . . . , d follows a Bernoulli distribution with probability

J
(
m, γij = 1, γ−ij, τ, η

)
J
(
m, γij = 1, γ−ij, τ, η

)
+ J

(
m, γij = 0, γ−ij, τ, η

) .
That the above probability equals p0 if mi ̸= mj. This is because if mi ̸= mj, δ(mi,mj) = 0, and the value of γij in the model
(4) does not affect the model fitting. Thus, in this case, the posterior distribution of γij is not affected by the data and is
the same as the prior distribution.

A.4. Simulate θ from p (θ|m, γ, τ, η)

Based on the posterior conditional distribution of θi (13),

Aij|δ
(
mi,mj

)
· γij = 0

i.i.d.
∼ N

(
0, ξ 2) and

θi|m, γ, τ, η
ind
∼ MN

(
M−1

i Vi,M−1
i

)
for i = 1, . . . , d.

A.5. Simulate τ from p (τ|ΘI , η)

From the joint posterior distribution (12), we have

τi|ΘI , η
ind
∼ Inv-Gamma

(
1
2
,
Ri(η,ΘI )

2

)
for i = 1, . . . , d.
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Appendix B. Proof of the normal distribution of the data p (η|ΘI, τ)

Based on the model (8) for basis coefficients η, we have

p (η|ΘI , τ) ∝ exp

{
−

d∑
i=1

Ri (η,ΘI)

2τi

}
∝ exp

{
−

1
2

(
η′ ΩΘI ,τ η − 2Λ′

ΘI ,τ
η + ΞΘI ,τ

)}
∝ exp

{
−

1
2

(
η − Ω

−1
ΘI ,τ

ΛΘI ,τ

)′
ΩΘI ,τ

(
η − Ω

−1
ΘI ,τ

ΛΘI ,τ

)}
. (14)

Thus, from (14), η|ΘI , τ ∼ MN
(
Ω

−1
ΘI ,τ

ΛΘI ,τ,Ω
−1
ΘI ,τ

)
.

Notations of ΩΘI ,τ,ΛΘI ,τ , and ΞΘI ,τ are introduced in Eq. (8), and we here derive their formulas conditioning on ΘI
and τ in the following.

Define vectors with d · L elements:

∆i (t) =

(
Ai1 · δ (mi,m1) · γi1 · b1 (t) , . . . , Ai1 · δ (mi,m1) · γi1 · bL (t) ,

Ai2 · δ (mi,m2) · γi2 · b1 (t) , . . . , Aid · δ (mi,md) · γid · bL (t)
)

, and

E i (t) =

(
0L, . . . ,

(
d2b (t)
dt2

)′

, . . . , 0L

)
, J i (t) =

(
0L, . . . ,

(
db (t)
dt

)′

, . . . , 0L

)
,

where 0L is a zero vector with L elements, and the (i − 1) · L + 1th to i · Lth elements of E i (t) and J i (t) are nonzero.
With the basis representation (5), the MODDM (4) can be rewritten as E i (t) η − ∆i (t) η − Di − Gi · J i (t) η = 0. Let
Si (t) = E i (t) − ∆i (t) − Gi · J i (t). We have

d∑
i=1

Ri(η,ΘI )/τi =

d∑
i=1

1
τi

(
η′

∫ T

0
S′

i (t) Si (t) dt η − 2
∫ T

0
Di · Si (t) dt η +

∫ T

0
D2
i dt
)

.

Comparing the above to Eq. (8), we have

ΩΘI ,τ =

d∑
i=1

1
τi

∫ T

0
S′

i (t) Si (t) dt, ΛΘI ,τ =

d∑
i=1

1
τi

∫ T

0
Di · S′

i (t) dt, and

ΞΘI ,τ =

d∑
i=1

1
τi

∫ T

0
D2
i dt.
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