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ABSTRACT
The human brain is a directional network system of brain regions involving directional connectivity. Seizures
are a directional network phenomenon as abnormal neuronal activities start from a seizure onset zone
(SOZ) and propagate to otherwise healthy regions. To localize the SOZ of an epileptic patient, clinicians
use intracranial electroencephalography (iEEG) to record the patient’s intracranial brain activity in many
small regions. iEEG data are high-dimensional multivariate time series. We build a state-space multivariate
autoregression (SSMAR) for iEEG data to model the underlying directional brain network. To produce
scientifically interpretable network results, we incorporate into the SSMAR the scientific knowledge that
the underlying brain network tends to have a cluster structure. Specifically, we assign to the SSMAR
parameters a stochastic-blockmodel-motivated prior, which reflects the cluster structure. We develop a
Bayesian framework to estimate the SSMAR, infer directional connections, and identify clusters for the
unobserved network edges. The new method is robust to violations of model assumptions and outperforms
existing network methods. By applying the new method to an epileptic patient’s iEEG data, we reveal seizure
initiation and propagation in the patient’s directional brain network and discover a unique directional
connectivity property of the SOZ. Overall, the network results obtained in this study bring new insights
into epileptic patients’ normal and abnormal epileptic brain mechanisms and have the potential to assist
neurologists and clinicians in localizing the SOZ—a long-standing research focus in epilepsy diagnosis and
treatment. Supplementary materials for this article, including a standardized description of the materials
available for reproducing the work, are available as an online supplement.
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1. Introduction

Brain activities form a directional network, where network
nodes are brain regions and each network edge represents
a directional influence exerted by one region on another.
Such directional information flow from one region to an-
other is referred to as directional connectivity also called ef-
fective connectivity (Friston 1994). The purposes of this ar-
ticle are to present a new statistical approach for analysis of
intracranial electroencephalographic (iEEG) data and to use
our approach to uncover the normal and abnormal directional
brain networks of epileptic patients over the course of seizure
development.

Seizures are a directional network phenomenon (Rosenow
and Lüders 2001), as abnormal, excessive, and synchronous
neuronal activities start from the seizure onset zone (SOZ) and
propagate to otherwise healthy brain regions. Brain surgery
to remove the SOZ is a common treatment consideration for
patients with drug resistant epilepsy. Presurgical evaluation in-
cludes localization of the SOZ using iEEG, which is absolutely
critical to the success of the surgery. Clinicians place iEEG elec-
trodes on the exposed brain (inside the skull) of patients with
epilepsy to record their neuronal activities in many regions. The
recorded data are high-dimensional multivariate time-series of
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voltage waveforms, which often exceed 50 channels (with each
channel corresponding to one region). Figure 1(a) shows the
electrode placement on the left hemisphere of a patient who
underwent iEEG recordings in epilepsy evaluation. Figure 1(b)
illustrates 5-sec segments of the patient’s iEEG recordings in two
regions/channels.

To localize the SOZ, trained EEG experts visually examine
iEEG waveforms and designate the region that first shows ab-
normal epileptic activity to be the SOZ (Jacobs et al. 2012).
However, despite careful planning, sometimes visual analysis of
iEEG fails to localize the SOZ clearly (Harroud et al. 2012). One
crucial reason is that sometimes seizure onsets consist of low
amplitude, very fast activity. This activity may not generate ap-
propriate power that can be visually detected until the seizure is
well underway. Activity with greater power that can be identified
may occur later, by which time seizure activity has spread be-
yond the actual SOZ and involves brain regions that are involved
in seizure occurrence but do not serve as the electrical source.
Given that seizures are a directional network phenomenon, our
method for mapping directional brain networks (i.e., identi-
fying directional connections) using iEEG data is expected to
improve understanding of the brain system and localization of
the SOZ.

© 2021 American Statistical Association
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Figure 1. (a) The iEEG electrode placement on the left hemisphere of the epileptic patient under study. (b) iEEG time-series segments of two regions/channels.

iEEG data are high-dimensional multivariate time series
recordings of many small regions’ neuronal activities at a high
temporal resolution (millisecond scale) and spatial resolution
(about 10 mm in diameter) and with a strong signal-to-noise
ratio (SNR) (Cervenka et al. 2013), in contrast to popular func-
tional magnetic resonance imaging (fMRI) with a low temporal
resolution and scalp EEG with a low spatial resolution. As such,
iEEG data provide valuable information about directional brain
networks.

Mapping directional brain networks based on high-
dimensional multivariate time series, however, faces multiple
challenges. First, it is difficult to construct a model that can
accurately characterize the complex mechanism of a high-
dimensional brain system, that is, how each region’s activity
depends on many others’ activities. Second, the estimation of
a high-dimensional model has a large variance. With many
regions being studied and enormous possibilities in directional
connections among the regions, it is challenging to identify
only a few strong connections among enormous candidate ones.
Though incorporating anatomic connectivity (AC) information
into the directional connectivity model can improve the
estimation of directional connections (Hahn et al. 2019), AC
information is not always available. Here, we consider mapping
directional brain networks without relying on AC information.
Simple sparsity regularization does not address the challenge
because high-dimensional sparse networks have many different
forms, most of which do not accurately reflect the brain’s
functional organization. For example, standard L1-regularized
estimates (Basu and Michailidis 2015; Nicholson, Matteson,
and Bien 2017) lead to the sparse network in which every region
has only a few connections with other regions. However, this
sparse network is not consistent with known brain networks
in which regions with similar functions tend to be closely
connected (Petersen and Sporns 2015). Third, the computation
for analyzing high-dimensional multivariate time series data
can be intensive. Existing approaches to mapping directional
networks usually address only a part of these challenges, as
explained below.

Network mapping approaches fall into two major cat-
egories: information-theoretic-measure based methods and
model-based methods. The former includes correlations, cross-
correlations (Schiff et al. 2005; Kramer, Kolaczyk, and Kirsch
2008), cross-coherence (Schröder and Ombao 2019), transfer

entropy (Vicente et al. 2011), directed transinformation (Hin-
richs, Heinze, and Schoenfeld 2006), directed information (Liu
and Aviyente 2012), and many others (Wilke, Worrell, and He
2011; van Mierlo et al. 2013). Although these measures are fast to
compute, they are mainly for quantifying pairwise relationship
between regions and ignore system features of the brain in which
each region’s activity depends on many other regions’ activities.
Thus, information-measure-based approaches lack the ability to
delineate the entire signal pathway of directional connections
from regions to regions.

Model-based methods have been developed to describe si-
multaneous directional connectivity among all the recorded re-
gions. The most popular models include dynamic causal model-
ing (DCM, Friston, Harrison, and Penny 2003) and neural mass
models (NMM, David and Friston 2003), which use ordinary
differential equations (ODE) to characterize directional connec-
tivity. Because of their complex mathematical formulation, the
DCM and NNM are typically used for low-dimensional brain
networks (consisting of only a few brain regions being stud-
ied). To address this limitation, Zhang et al. (2015, 2017, 2019)
proposed to use linear ODEs to approximate high-dimensional
brain systems (consisting of many regions). However, parame-
ter estimation of deterministic ODE models is sensitive to the
model specification, data noise, and data-sampling frequency.

We propose to use a state-space multivariate autoregression-
based (SSMAR) model for iEEG data to address the limitation
of existing methods. First, the state-space framework allows for
separating the model error due to the inherent model inade-
quacy for a complex system and the data measurement error.
The SSMAR with the two errors is flexible to approximate differ-
ent systems and is robust to various deviations from the assumed
model. Equally importantly, the formulation of SSMAR is much
simpler than ODE models, which thus, enables fast computation
for high-dimensional data.

Different from standard multivariate-autoregressi (MAR,
Goebel et al. 2003; Harrison, Penny, and Friston 2003; Korze-
niewska et al. 2008) and SSMAR (Riera et al. 2004; Cheung
et al. 2010), our SSMAR is uniquely constructed for analyzing
iEEG data to map directional brain networks. It has been widely
documented (Newman 2006; Sporns 2011) that brain networks
have a cluster structure, in which regions are more densely
connected with regions in the same cluster than with regions
otherwise. Our approach incorporates the cluster structure to
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greatly improve the model estimation. Specifically, we propose
a stochastic blockmodel (SBM)-motivated prior for the SSMAR
parameters, restricting the estimated network to have the cluster
structure. The SBM (Nowicki and Snijders 2001; Airoldi et al.
2008; Durante and Dunson 2014; Geng, Bhattacharya, and Pati
2019) is a generative model for the networks in the cluster struc-
ture. However, existing applications of the SBM (Arroyo-Relión
et al. 2017; Paul and Chen 2018) and most cluster identification
methods (also called community detection, a terminology often
used in social network literature) (Goldenberg et al. 2010; Zhao,
Levina, and Zhu 2012) are for observed networks with known
edges. The proposed method addresses a more challenging
problem of inferring unobserved networks based on multivariate
time series measurements of network nodes’ activities.

Using the SBM-motivated prior for SSMAR parameters, we
develop a Bayesian framework to make inferences about the
underlying network. The proposed Bayesian approach has three
major advantages. First, our method improves the efficiency
in identifying connected brain regions (i.e., a high true posi-
tive) and produces scientifically interpretable network results
by incorporating the cluster structure into the model. Second,
the proposed Bayesian framework accounts for the model error
due to the model inadequacy for the complex system as well
as the statistical uncertainty in identifying connected regions.
Third, the simple SSMAR formulation brings the flexibility to
approximate various brain systems and enables fast computation
for high-dimensional multivariate time series data. As such,
our approach effectively addresses the three major challenges in
mapping high-dimensional brain networks.

The rest of the article is organized as follows. In Section 2, we
introduce the new SSMAR model for directional brain networks
with the cluster structure. We build a Bayesian hierarchical
model with an SBM-motivated prior to make inferences of SS-
MAR parameters and develop an efficient Markov chain Monte
Carlo (MCMC) simulation algorithm for the ensuing poste-
rior inference. In Section 3, we apply the developed Bayesian
model to data simulated under two different model settings
and network patterns and compare the ensuing results with
those of existing network mapping methods. We show that
the proposed method is robust to various deviations from the
assumed model and outperforms existing methods by achieving
much higher accuracy in identifying connected brain regions.
Section 4 presents the analysis results of real iEEG data from
an epileptic patient by the new SSMAR model. We reveal the
patient’s directional brain network changes over the course of
seizure development, uncover a unique directional connectivity
property of the SOZ, and use this property to localize the SOZ.
Section 5 concludes with a discussion.

2. Dynamic System Models and Bayesian Inference

2.1. The State-Space MAR Model

Let y(t) = (y1(t), . . . , yd(t))′ be observed iEEG measurements
of d brain regions (equivalently d network nodes of the brain
network under study) at time t and x(t) = (x1(t), . . . , xd(t))′ be
the underlying neuronal state functions of the d brain regions
at time t for t = 1, . . . , T. Since each iEEG electrode directly
records one brain region’s neuronal activity with a high spatial

and temporal resolution, we propose a simple space model that
links yi(t) to xi(t):

yi(t) = ci · xi(t) + εi(t), i = 1, . . . , d, (1)

where ci is a unknown constant, and εi(t) is a data measurement
error with mean zero.

For the state model that describes directional connectivity
among the d regions at the neuronal level, we propose to use the
simplest dynamic system model, that is, the first-order MAR, for
x(t):

xi(t) =
d∑

j=1
Aij · xj(t − 1) + ηi(t), i = 1, . . . , d, t = 1, . . . , T,

where ηi(t) is the model error due to the model inadequacy in
characterizing the dynamics of region i.

Our goal is to develop a parsimonious model to detect the
existence of temporal dependence among neuronal activities of
regions rather than building a comprehensive model that can ex-
plain all the neuronal activities. Due to the high-dimensionality
and the current limited understanding of the brain system, it
is extremely difficult to build such a comprehensive dynamic
system model. Even though more complex models, such as high-
order MARs, may fit the observed data better, they still suffer
from the model inadequacy. More seriously, high-order MARs
have large estimation errors because they have at least d2 more
parameters than first-order MARs. Consequently, the first-order
MAR is more efficient for detecting connected regions and
addresses our needs.

Under the SSMAR, identifying connected regions and map-
ping the brain network are equivalent to selecting statistically
significant nonzero Aij’s. To distinguish nonzero directional
connections from zero ones, we introduce indicators for Aij’s:

xi(t) =
d∑

j=1
γij ·Aij ·xj(t−1)+ηi(t), i = 1, . . . , d, t = 1, . . . , T,

(2)
where γij is an indicator, taking values either 0 or 1. We use γij’s
to stand for the set of indicators {γij, i, j = 1, . . . , d}. The use of
indicators is similar to the “spike-and-slab” prior (Miller 2002;
Theo and Mike 2004; Ishwaran and Rao 2005) in the Bayesian
variable selection framework (George and McCulloch 1993,
1997; Brown, Vannucci, and Fearn 1998; Yi, George, and Allison
2003). Under (2), identifying connected brain regions, that is,
selecting directional network edges, is equivalent to selecting
nonzero γij’s, which is the focus of our model estimation.

The observation model (1) and the state model (2) together
are the proposed SSMAR for the brain’s directional connectivity.
Note that the first-order SSMAR is different from the first-order
MAR: The former is robust to violations of model assumptions,
but the latter is not. This is because the SSMAR uses two error
terms, ηi(t) and εi(t), to accommodate the model inadequacy
and measurement error separately.

We let ηi(t) iid∼ N(0, 1) for several reasons. First, ci in (1)
and the variance of ηi(t) are not uniquely defined. Since we
treat the former as unknown, we fix the latter at 1 to avoid
the identifiability issue. Second, letting ηi(t) be independent
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between regions enables γij and Aij to capture the dependence
between regions more efficiently than otherwise. Third, letting
ηi(t) be independent over time brings parsimony to the model.
Again, our purpose is to detect the existence of temporal de-
pendence between regions’ iEEG rather than capturing all pos-
sible temporal dependence. Similarly, for the latter two reasons,
we let εi(t) iid∼ N(0, τi). We show through simulation studies
(Section 3) that our approach is robust to violations of model
assumptions.

2.2. Bayesian Hierarchical Model for SSMAR

Since nonzero γij’s define the brain’s directional network, we
impose the cluster structure on the estimated brain network
through using a SBM-motivated (Fienberg, Meyer, and Wasser-
man 1985; Nowicki and Snijders 2001; Airoldi et al. 2008; Du-
rante and Dunson 2014) prior for γij’s. The cluster structure
means that regions within the same cluster connect more closely
with each other than with regions in a different cluster. The
cluster structure fits the brain’s functional organization reported
in the literature (Newman 2006; Sporns 2011) and is also useful
in epilepsy diagnosis. For example, regions in the SOZ’s cluster
are those affected by the SOZ’s activities most. Information
about the SOZ’s cluster and its changes during seizure devel-
opment can help neurologists assess the effect of seizures on
brain functions. In summary, developing the SBM-motivated
prior for SSMAR parameters to impose the cluster structure
on the estimated network is another important novelty of our
approach.

Let K be the prespecified number of clusters. Let mi =
(mi1, . . . , miK)′ be a K-dimensional vector with only one ele-
ment being 1 and the rest being 0; mi labels the cluster of region
i, that is, mik = 1 indicates region i in the cluster k. Let Bk1k2 ,
k1, k2 = 1, . . . , K, denote the prior probability of a nonzero
directional connection from a region in cluster k2 to another
region in cluster k1. Let B be a K × K matrix with entries Bk1k2
for k1, k2 = 1, . . . , K.

2.2.1. Prior Specification for the Cluster Structure
The prior for the brain network with the cluster structure is a
joint distribution for indicators γij’s, the cluster labels mi’s, and
the probability matrix B as follows:

γij|mi, mj, B ind∼ Bernoulli(m′
i B mj); (3)

mi
iid∼ Multinomial(1; p1, . . . , pK) for i = 1, . . . , d, and

(p1, . . . , pK) ∼ Dirichlet(α); (4)

Bkk
iid∼ Uniform(l0, 1) and Bk1k2

iid∼ Uniform(0, u0),
k1, k2 = 1, . . . , K, k1 �= k2; (5)

where l0 and u0 are given constants between 0 and 1, and α =
(1, . . . , 1), assigning uniform weights to different clusters. The
distribution (3) specifies the probabilities of both within-cluster
and between-cluster connections. For example, if mik1 = 1 and
mjk2 = 1, then m′

i B mj = Bk1k2 , which is the prior probability
of existing a directional connection from cluster k2 to cluster k1;
if mik = 1 and mjk = 1, m′

i B mj = Bkk, which is the prior prob-
ability of existing a directional connection between two regions

in the same cluster k. Since within-cluster connections are dense
and strong, while between-cluster connections are sparse (Park
and Friston 2013), we let u0 = 0.1 and l0 = 0.9. The large
difference between u0 and l0 facilitates differentiating within-
cluster connections from between-cluster ones and identifying
clusters.

The distributions (3)–(5) together define the SBM-motivated
prior for γij’s. Our goal is to identify clusters and select signifi-
cant edges by estimating the cluster labels for regions, mi’s, and
the indicators for edges, γij’s.

2.2.2. Prior Specification for Aij’s
We assign a normal prior to Aij:

Aij
iid∼ N(0, ξ 2

0 ), (6)

where ξ0 is a positive constant so that the density of Aij is almost
flat within its domain.

2.2.3. Priors for Other Parameters
Let x(0) = (x1(0), . . . , xd(0), c = (c1, . . . , cd), μ =
(μ1, . . . , μd), and τ = (τ1, . . . , τd). We assign the following
priors to the rest parameters:

xi(0)
ind∼ N(μi, 1), μi

iid∼ N(0, ξ 2
1 ), ci

iid∼ N(0, ξ 2
1 ),

p(τi) ∝ 1
τ

1+ρ0
i

exp{−ρ0
τi

}, i = 1, . . . , d, (7)

where ρ0 is a prespecified small positive constant to give an
almost flat prior for τ and ξ1 is a large positive constant to give
almost flat priors for ci and μi.

2.2.4. Joint Posterior Distribution
All the parameters to be estimated in the proposed Bayesian
framework are � = {�, B, M, A, c, τ , μ, p}, where � is a d × d
matrix with entries γij for i, j = 1, . . . , d, M is a K × d matrix
with the ith column being mi, A is a d × d matrix with entries
Aij for i, j = 1, . . . , d, and p = {p1, . . . , pK}.

Let X = {x(0), . . . , x(T)} and Y = {y(1), . . . , x(T)}. The
SSMAR model (1) and (2) with prior distributions (3)–(7) lead
to the posterior distribution: p(X, �|Y) ∝ p(Y|X, �) ·p(X|�) ·
p(�). The detailed formulation of the joint posterior distribu-
tion is provided in the Supplementary Appendix.

2.3. EM Algorithm for Setting Initial Values and
Hyperparameter

We simulate from p(X, �|Y) with a partially collapsed Gibbs
sampler (Van Dyk and Park 2008), whose MCMC simulation
steps are provided in the Supplementary Appendix.

The MCMC simulation can take many iterations to con-
verge especially for large d. To address this issue, following the
practice suggested in Gelman et al. (2013, chap. 13.1), we use
an expectation-maximization (EM) algorithm to find the start-
ing values for the MCMC simulation. Specifically, we optimize
p(Y|�) = ∫

p(Y|�, X) · p(X|�)dX by the EM algorithm,
in which the state functions X are treated as missing values.
The output of the EM algorithm, �̂ in the final step, is used
as the initial value for the following 10,000 MCMC iterations.
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For all our simulation and real data analysis, we verified that
the MCMC algorithm converged upon evaluating the Gelman–
Rubin statistic Gelman and Rubin (1992).

We need to determine the value of K, the number of clusters,
for the proposed Bayesian model. Standard approaches to select-
ing hyperparameters for Bayesian methods include information
criteria and cross-validation. However, these methods are time-
consuming for large d, because they all require running the
posterior simulation for each candidate K. We propose to select
the value for K by the EM algorithm. Specifically, we let K = d
in our EM algorithm. We set the initial values of mii to 1 for
i = 1, . . . , d, that is, we let each region form one independent
cluster at the start of the EM algorithm. As the algorithm iterates,
several regions fall into the same cluster, and the number of
distinct clusters of the d regions becomes stable. Since the EM
algorithm can find the number of clusters that leads to a locally
optimal posterior, we let the K in the Bayesian model be the
number of distinct clusters in the final step of the algorithm.

2.4. Posterior Inference

We use two posterior probabilities to map the brain network:
P̂m

ij = 1
S
∑S

s=1 δ(m(s)
i , m(s)

j ) and P̂γ
ij = 1

S
∑S

s=1 γ
(s)
ij , where S is

the total number of MCMC samples after burn-in. The former,
called the clustering probability, is the posterior probability of
two regions i and j in the same cluster; and the latter, called the
network edge probability, is the posterior probability of nonzero
directional connectivity from region j to i. We use P̂m

ij , i, j =
1, . . . , d, to identify clusters. Given a threshold h̄m, if P̂m

ij > h̄m,
regions i and j are put in the same cluster; if additionally, P̂m

jk >

h̄m, then the three regions i, j, and k are put in the same cluster
regardless of the value of P̂m

ik . We use P̂γ
ij to select directional

network edges. Given a threshold h̄γ , if P̂γ
ij > h̄γ , we deem the

directional connection from region j to i nonzero and select the
directional network edge from j to i.

2.4.1. Choice of Thresholds
The total numbers of potential network edges and possi-
ble network patterns are enormous for high-dimensional net-
works. Because of the uncertainty resulted from the high-
dimensionality, posterior probabilities P̂m

ij and P̂γ
ij are all small.

To address this issue, many Bayesian methods select variables
based on the ranks of their posterior probabilities (Li et al. 2015;
Zhang et al. 2017). We here propose to determine the thresholds
for P̂m

ij and P̂γ
ij based on their significance/p-values under the

null hypothesis that all the regions are independent from each
other, as explained in detail below.

We first generate a null dataset Y0 that satisfies the null hy-
pothesis. Specifically, given long iEEG time series before seizure
onsets, we randomly sample a short segment Y0

i = {yi(t), t =
ti + 1, . . . , ti + T} of each region i and let the pairwise distance
between any two regions’ segments, |ti − tj|, no smaller than
2T. All the regions’ segments Y0

i , i = 1, . . . , d, form Y0, in
which the temporal dependence of each region’s time-series data
points remains while the dependence between regions’ time
series is almost none. Applying our Bayesian method to Y0,

we obtain the ensuing the clustering probabilities and network
edge probabilities, which form the empirical null distributions
for P̂m

ij ’s and P̂γ
ij ’s, respectively. We evaluate the p-values of P̂m

ij ’s
and P̂γ

ij ’s based on the null distributions and determine the
thresholds for P̂m

ij ’s and P̂γ
ij ’s corresponding to the chosen p-

value. We here use the p-value of 1% to ensure a low false positive
rate.

3. Simulation Study

3.1. Example 1: Simulation From a Third-Order SSMAR

We simulated multivariate time-series data from the following
third-order SSMAR.

xi(t) =
d∑

j=1
A1,ij xj(t − 1) +

d∑

j=1
A2,ij xj(t − 2)

+
d∑

j=1
A3,ij xj(t − 3) + ηi(t) and

yi(t) = ci · xi(t) + εi(t).

The above system has three clusters of size 15, 15, and 20. We
consider region j has a directional influence over i, if at least
one of A1,ij, A2,ij, and A3,ij is nonzero. Figure 2(a) shows the
simulated network pattern, where the presence of a directional
connection is indicated by an edge (gray edges for within-cluster
connections and purple edges for between-cluster connections).

We simulated ηi(t) from the model

η(t) = 0.5η(t − 1) + δ(t) and δ(t) iid∼ MNV(0, �1), (8)

where �1 is a block diagonal matrix with each block cor-
responding to one cluster. The diagonal entries of �1 all
equal 1 and off-diagonal entries in diagonal submatrices follow
Uniform(0, 0.5). The upper bound of off-diagonal entries is
chosen such that �1 is strictly positive definite.

We generated the observation errors ε(t) =
(ε1(t), . . . , εd(t))′ from the model

ε(t) = 0.5ε(t − 1)+ ζ (t) and ζ (t) iid∼ MVN(0, D
1
2 �2D

1
2 ), (9)

where �2 is created in the same way as �1, and D is a d-by-d
diagonal matrix with the diagonal entries chosen such that the
SNRs of all the time series equal 10. The median SNR of real
iEEG data is much higher than 10 (Zhang et al. 2015). As such,
the simulated model errors and data errors are all spatially and
temporally correlated, which violates the model assumptions of
the proposed SSMAR.

Using the simulated edges as the true values, we calculated
false positive rates (FPRs) and true positive rates (TPRs) of
network edge selection based on different thresholds for P̂γ

ij ’s.
For comparison, we examined the FPRs and TPRs of popular
competing methods, including the third-order MAR with L1
regularization (implemented by using the R package BigVAR,
Nicholson, Matteson, and Bien 2017), denoted by MAR(L1),
partial directed coherence (PDC, Baccalá and Sameshima 2001),
the spectrum synchronicity (Euán, Ombao, and Ortega 2018),
and graphical lasso (Glasso, Witten, Friedman, and Simon 2011;
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Figure 2. (a) The true simulated network structure. (b) The ROC curves of the proposed Bayesian method with a SBM-motivated prior (BSBM) and competing methods
including MAR(L1), PDC, the spectrum synchronicity, and Glasso. (c) The estimated network corresponding to 1% p-value.

Friedman, Hastie, and Tibshirani 2014). Figure 2(b) shows the
ROC curves of TPRs versus FPRs for these methods. The pro-
posed Bayesian method with the SBM-motivated prior (BSBM)
outperformed the other methods as evidenced by its much
greater TPRs given the same FPRs.

Figure 2(c) shows the estimated network pattern using the
thresholds corresponding to 1% p-value for P̂m

ij and P̂γ
ij . The pro-

posed method was able to identify three clusters. For detecting
the directional connections among the 50 regions, the overall
TPR and FPR are 0.84 and 0.02. More specifically, the TPR
and FPR are 0.95 and 0 for within-cluster connections and 0.45
and 0.02 for between-cluster connections. The comparably low
TPR for selecting between-cluster connections is due to several
reasons. First, since the clustering is subjective, our selection of
directional network edges based on Pγ

ij does not account for the
identified clusters. As within-cluster connections (accounting
for 32.6% of all candidate connections) are much denser than
between-cluster connections (9.0% of all candidate connec-
tions), network edge selection is more toward selecting within-
cluster connections, so that the overall network edge selection
accuracy is high. Second, the number of candidate between-
cluster connections is enormous and even more than the total
number of true network edges. As such, the true between-cluster
connections are highly sparse and more difficult to identify
than within-cluster connections. Third, since the number of
null connections is large, we used a high threshold for Pγ

ij to
avoid many false selections, which also leads to a low TPR for
selecting between-cluster connections. Overall, the proposed
method outperformed existing methods by achieving a higher
TPR and an almost zero FPR.

In summary, this simulation demonstrates the robustness of
our SSMAR to violations of model assumptions and its efficiency
in identifying connected regions and clusters.

3.2. Example 2: Simulation From the Dynamic Causal
Modeling

We simulated time series from a 50-dimension dynamic sys-
tem given by the DCM (Friston, Harrison, and Penny 2003),
the most popular ODE-based model for the brain’s directional
connectivity. The DCM is for low-dimensional brain networks.
We expanded its state model to be high-dimensional and the

same as that of the sparse regression-DCM (srDCM, Frässle
et al. 2018), an extension of the DCM for high-dimensional
brain networks. We used this high-dimensional state model
to generate x(t) of 50 regions. Then we simulated y(t) based
on the observation model of the DCM, which describes the
transformation of neuronal activity x(t) into observed y(t). The
signal-to-noise was set to be 1, which was considered small
in the literature (Frässle et al. 2018). Figure 3(a) shows the
simulated directional network among 50 regions.

We applied the proposed BSBM to simulated y(t) with 2714
time points, which were identical to those of the simulated
data under the srDCM (Frässle et al. 2018). We also applied
the BSBM to down-sampled data with 1000 time points. Fig-
ures 3(b) and (c) show the ROC curves of the BSBM and
other competing methods for the data of two frequencies. We
also analyzed the simulated data using the srDCM. Though
the proposed SSMAR is distinct from the DCM and srDCM,
our method was robust to model specification, data noise, and
data-sampling frequency and outperformed existing methods
by achieving the largest area under the ROC curve.

4. Real iEEG Data Analysis

We applied the proposed method to iEEG data of a patient with
epilepsy, who had 64 electrodes placed on the exposed surface of
his brain, as shown in Figure 1(a). iEEG recorded the patient’s
brain activities in three seizures. The sampling rate of this pa-
tient’s iEEG data was 4000 Hz. We down-sampled the iEEG data
to 1000 Hz, a typical rate used in the literature (Burns et al. 2014;
Zhang et al. 2015). EEG experts manually examined the data and
determined seizure onset times and the SOZ, which was G37. A
responsive neurostimulation system was later implanted in his
brain with a lead placed on G37. The use of RNS has significantly
reduced his seizure occurrences. This confirms that the SOZ was
accurately located. In our analysis, we treated seizure onset times
as given, since the detection of seizure onset time is not difficult.
However, we did not use the location information of the SOZ
when mapping the directional brain network among recorded
brain sites. The SOZ was treated as unknown and equally as
other brain sites. As such, we could validate our network results
against the location information of the SOZ.
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Figure 3. Simulation studies of two generative models for fMRI data. (a) The simulated (true) network pattern. (b) ROC curves of network edges selection for the simulated
data at 2714 time points. (c) ROC curves of network edge selection for the simulated data at 1000 time points.

Figure 4. Brain networks for four periods. t = 0 is the starting time of seizure onset. Gray and purple edges indicate within-cluster and between-cluster directional
connections, respectively, based on a threshold corresponding to 1% p-value. The node in the diamond is G37, the true SOZ. A node in light blue corresponds to a region
in a cluster containing itself only. Nodes in the same color (dark blue, green, pink, red, or yellow) are regions identified to be in the same cluster.

Channels 63 and 64, as the reference electrodes, were re-
moved from the analysis. We evaluated connectivity among the
rest 62 regions. To minimize the residual artifacts of 60 Hz
electrical noise, we used a 60 Hz notch filter during the primary
recording and removed the first principal component through
the principal component analysis.

Once a seizure starts, the connection strength between the
SOZ and other regions increases (Englot, Konrad, and Mor-
gan 2016), resulting in abnormally synchronized or excessive
neuronal activities in other regions (Fisher et al. 2014). Thus,
an effective brain network mapping methods should reveal
different brain networks before and after seizure onset: More
regions are expected to be affected by the activities from the
SOZ after the seizure onset. We applied our method to map
brain networks in the periods around the seizure onset time and
examined the effectiveness of our method in revealing different
brain networks before and after seizure onset. We focused on
four time periods: 26–50 sec before seizure onset, 1–25 sec
before seizure onset, 1–25 sec after seizure onset, and 26–50
sec after seizure onset. To ensure effective approximation of the
underlying complex brain system by the SSMAR and also to
accommodate potential variation of brain activities over time,
we applied the developed method to each 1-sec iEEG segment
(containing 1000 time series measurements) independently. In

total, we analyzed 300 1-sec iEEG data segments (4 periods ×
25 sec × 3 seizures).

For each 1-sec data segment and for each pair of regions i
and j, we obtained their clustering probability P̂m

ij and network
edge probabilities P̂γ

ij and P̂γ
ji . For each seizure period, we took

average of posterior probabilities in 75 segments and denoted
the ensuing average posterior probabilities by P̄m

ij , P̄γ
ij , and P̄γ

ji .
We identified clusters and connected brain regions and mapped
brain networks for four seizure periods based on these aver-
age probabilities. This analysis is consistent with the medical
practice where reliable epilepsy diagnosis is based on combined
information of iEEG recordings of at least three seizures (Marks
and Laxer 1998).

4.1. Network Results

Figures 4(a)–(d) show estimated networks for the four periods
using the thresholds corresponding to the p-value of 1%. The
SOZ is at G37, indicated by the diamond in all these four figures,
while all the other regions are indicated by circles. The shown
network edges (in gray or purple) indicate their network edge
probabilities above the threshold; and the nodes indicated by the
same color other than light blue are corresponding to the regions
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identified to be in the same cluster. Each region indicated by
light blue forms one cluster that contains the region itself only.

Our method reveals that the networks for the two preseizure
periods were similar (Figures 4(a) and (b)), indicating that the
subject’s brain network was steady before seizure onset. How-
ever, dramatic changes occurred in the networks once seizure
started (Figures 4(c) and (d)). Compared to the preseizure net-
works, more regions were connected to the SOZ (G37) and fell
into the same cluster as the SOZ, indicating that the activity of
the SOZ affected more and more regions as seizure developed.
This result is in line with the existing understanding of seizure
propagation (Rosenow and Lüders 2001; Englot, Konrad, and
Morgan 2016).

To demonstrate the advantages of our method, we also
analyzed the same iEEG data using several competing meth-
ods, including correlation, cross-correlation, PDC (Baccalá and
Sameshima 2001), directed transfer function (DTF, Kamin-
ski and Blinowska 1991), L1-penalized MAR (MAR(L1)), and
Glasso (Witten, Friedman, and Simon 2011; Friedman, Hastie,
and Tibshirani 2014). We used each of these methods to analyze
300 1-sec segments independently and obtained 300 calculated
values for each candidate network edge (either directional or

undirectional depending on the method). For each candidate
network edge, we used the average of 75 values in each period
to quantify the strength of connection. For comparison, we
selected network edges with top 5% averages, because the net-
work edges selected by our method based on the p-value of 1%
roughly correspond to the edges with top 5% P̄γ

ij ’s. Figures 5(a)–
(l) show the networks estimated by the competing methods
in the periods right before and right after the seizure onset.
All these popular methods failed to detect the changes in the
network at the seizure onset time, as evidenced by the similarity
between the preonset and seizure-onset networks.

4.2. SOZ Localization

We hypothesize that the SOZ exhibits a significant change in its
connectivity to other regions at the seizure onset. To quantify
this change, we developed the following method. For each pe-
riod, for each region, say j, we calculated the average of network
edge probabilities from j to all the other regions,

∑
i P̄γ

ij /d,
referred to as region j’s average directional connectivity (ADC)
in the period. We use the ADC difference between the periods

Figure 5. Brain networks estimated using correlation, cross-correlation, MAR with an L1 penalty (MAR(L1)), graphical Lasso (Glasso), partial directed coherence (PDC), and
directed transfer function (DTF) methods. Each network edge indicates a pair of regions identified to be connected by the competing methods.
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Figure 6. (a) Directional connectivity changes of 62 regions at seizure onset. (b) Regions with highest increases in directional connectivity.

right after and before the seizure onset to quantify the change in
directional connectivity from region j to other regions. Figure 6
shows the ADC changes of 62 regions at the seizure onset.
Except for one region, the SOZ and its neighboring regions have
the highest increases in ADC.

We propose to select the regions with high ADC increases to
be candidates for SOZ. To determine the threshold for ADCs,
we calculated the 62 regions’ ADC changes in the first two
preseizure periods for the three seizures recorded by iEEG.
Then we selected the regions whose ADC changes at the seizure
onset are larger than the maximum of ADC changes in the two
preseizure periods. Figure 6(b) shows the selected regions (in
red).

Our result showed that the small brain area including the
SOZ G37 has the highest increase in directional connectivity
at the seizure onset. This result is in line with the existing
literature about the SOZ (Englot, Konrad, and Morgan 2016):
the abnormal, excessive neuronal activity starts from it and
spreads to other regions. Our method quantified brain network
changes and uncovered that the brain area including the SOZ
first demonstrated an increase in directional connectivity dur-
ing the seizure development.

In summary, with our method, we revealed three charac-
teristics of the epileptic patient’s directional brain network. (1)
The patient’s network changed at the seizure onset time. (2) The
change occurred around the SOZ, as the SOZ cluster expanded
to include more regions, and the number of directional con-
nections between the SOZ and other regions increased. (3) The
extent of the directional connectivity of the SOZ increased most
compared to other regions at the seizure onset time. These three
results are in line with the existing understanding of seizure ini-
tiation and propagation. In contrast, existing network methods
could not obtain the above three results together. These results
are useful for identifying the brain areas affected by seizures and
for evaluating the effect of seizures on brain functions. Also, our
method has the potential to help clinicians localize the SOZ and,
thus, to improve epilepsy diagnosis and treatment.

5. Discussion

This article develops a new high-dimensional dynamic system
model for mapping directional brain networks using iEEG data.

The proposed approach has three novelties. First, the proposed
state-space first-order MAR-based model for the brain network
is effective for approximating various high-dimensional brain
systems. The model is robust to violations of model assump-
tions. Second, in contrast to standard SSMAR and MAR models,
the proposed Bayesian framework incorporates the prior knowl-
edge of the cluster structure into the model estimation, which
addresses the challenge in detecting connected brain regions
among many possible ones. Our method produces scientifically
meaningful network results. Third, we develop a stochastic-
blockmodel (SBM)-motivated prior to impose the cluster struc-
ture on the SSMAR parameters that denote directional edges.
This is novel from standard SBMs for observed networks where
network edges are directly known.

The proposed method can robustly detect directional con-
nections with high accuracy, even if the underlying model for
the brain network is nonlinear for three reasons. First, we apply
the SSMAR to short iEEG time segments so that the linear
model can effectively approximate the underlying network sys-
tem. Second, we use the proposed model to identify the di-
rectional connections through detecting the existence of tem-
poral dependence among neuronal activities of regions rather
than estimating the nonlinear interactions among regions. The
first-order SSMAR focuses only on the primary temporal de-
pendence (rather than the exact order or nonlinearity of the
dependence) among multivariate time series. Thus, the model
is parsimonious in terms of the number of model parame-
ters and enables efficient detection of directional connections
among many regions. Third, the SBM-motivated prior can effec-
tively capture potential brain network patterns. Using the SBM-
motivated prior increases the efficiency in detecting directional
connections. In summary, the proposed integration of a con-
ventional SSMAR and the cluster structure yields robustness,
flexibility, efficiency, and computational feasibility in modeling
and estimating brain network systems.

The obtained network results from iEEG data analysis by
the proposed method reveal how seizures propagate from the
SOZ to other regions and thus, bring new insights into the
brain’s normal and abnormal mechanisms and functions and
dysfunctions. By assuming the cluster structure for the brain
network, we identify the SOZ’s cluster (the regions affected
strongly by the SOZ’s activity) and its changes during seizure
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development. Such information can help neurologists assess the
effect of seizures on brain functions. Moreover, by revealing the
unique connectivity property of the SOZ, our network analysis
can improve SOZ localization in clinical treatment for epilepsy.

We have applied statistical methods used for localizing the
SOZ based on EEG data to our iEEG data. Specifically, Schröder
and Ombao (2019) developed frequency specific methods to
localize the SOZ through detecting changes in EEG data; and
Wang, Ombao, and Chung (2018) used the differences in per-
sistent homology between EEG data in preseizure and seizure
periods to localize the SOZ. However, these methods tend to
have much higher FPRs than the proposed method most likely
because EEG and iEEG data have different properties. The
two methods (Wang, Ombao, and Chung 2018; Schröder and
Ombao 2019) require the time series before and after seizures
to be stationary for a relatively long period. Since the regions
recorded by EEG are large and spatially distant from each
other, the changes in one EEG region take a relatively long
time to spread to other regions. As such, the assumption of
stationary long time series required by the two methods can be
satisfied with EEG data. In contrast, regions recorded by iEEG
are spatially close. Seizures propagate from the SOZ to other
regions quickly, and thus, many regions surrounding the SOZ
can have sharp changes in frequencies and persistent homology
in a short period of time. This phenomenon makes it difficult for
the methods that rely on relatively long stationary time series
to separate the SOZ from surrounding regions. Because our
method is focused on detecting the change in directional con-
nectivity instead of the change in time series, our method can
better exclude non-SOZ regions whose directional connectivity
remains unchanged at the seizure onset.

Supplementary Materials

The supplementary materials provide details of posterior inferences of the
proposed Bayesian method.
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