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Summary. A stepwise procedure, correlation pursuit (COP), is developed for variable selection
under the sufficient dimension reduction framework, in which the response variable Y is influ-
enced by the predictors X1, X2,. . . ,Xp through an unknown function of a few linear combinations
of them. Unlike linear stepwise regression, COP does not impose a special form of relationship
(such as linear) between the response variable and the predictor variables.The COP procedure
selects variables that attain the maximum correlation between the transformed response and
the linear combination of the variables. Various asymptotic properties of the COP procedure
are established and, in particular, its variable selection performance under a diverging number
of predictors and sample size is investigated. The excellent empirical performance of the COP
procedure in comparison with existing methods is demonstrated by both extensive simulation
studies and a real example in functional genomics.
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1. Introduction

Advances in science and technology in the past few decades have led to an explosive growth of
high dimensional data across a variety of areas such as genetics, molecular biology, cognitive
sciences, environmental sciences, astrophysics, finance and Internet commerce. Compared with
their dimensionalities, a large amount of data sets generated from these areas have relatively
small sample sizes. Variable (or feature) selection and dimension reduction are more than often
key steps in analysing these data. Much progress has been made in the past few decades on
variable selection for linear models (see Shao (1998) and Fan and Lv (2010) for a review). In
recent years, shrinkage-based procedures for simultaneously estimating regression coefficients
and selecting predictors have been particularly attractive to researchers, and many promising
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algorithms such as the lasso (Tibshirani, 1996; Zou, 2006; Friedman, 2007), LARS (Efron
et al., 2004) and smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001) have been
invented.

Let Y ∈ R be a univariate response variable and X = .X1, X2, . . . , Xp/′ ∈ Rp a vector of p
continuous predictor variables. Throughout this paper, we consider the following sufficient
dimension reduction (SDR) model framework as pioneered by Li (1991) and Cook (1994).
Let β1, β2, . . . , βK be p-dimensional vectors with βi = .β1i, β2i, . . . , βpi/

′ for 1� i�K. The SDR
model assumes that Y and X are mutually independent conditional on β′

1X, β′
2X, . . . , β′

KX, i.e.

Y⊥X|B′X, .1/

where ‘⊥’ means ‘independent of’ and B = .β1, β2, . . . , βK/. Expression (1) implies that all the
information X contains about Y is contained in the K projections β′

1X, . . . , β′
KX. A predictor

variable Xj (1� j �p) is said to be relevant if there is at least one i (1� i�K) such that βji �=0.
Let L be the number of relevant predictor variables. When there are a large number of predic-
tors (i.e. p is large), it is usually safe to impose the sparsity assumption, which states that only
a small subset of the predictors influences Y and the others are irrelevant. In the SDR model,
this assumption means that both K and L are small relative to p.

In his seminal paper on dimension reduction, Li (1991) proposed a seemingly different model
of the form

Y =f.β′
1X, β′

2X, . . . , β′
KX, "/, .2/

where f is an unknown .K +1/-variate link function and " is a stochastic error independent of
X. It has been shown that the two models (1) and (2) are in fact equivalent (Zeng and Zhu, 2010).
We henceforth always refer to β1, β2, . . . , βK as the SDR directions and the space spanned by
these directions as an SDR subspace. In general, SDR subspaces are not unique. To resolve this
ambiguity, Cook (1994) introduced the concept of a central subspace, which is the intersection
of all possible SDR subspaces and is an SDR subspace itself, and showed that the central space
is well defined and unique under some general conditions. We denote the central subspace by
S.B/ and assume its existence throughout this paper.

Various methods have been developed for estimating β1, . . . , βK in the literature on SDR. One
particular family of methods utilizes inverse regression, which is to regress X against Y. The
sliced inversion regression (SIR) method that was proposed by Li (1991) is the forerunner of this
family of methods. Recognizing that estimation of the SDR directions does not automatically
lead to variable selection, Cook (2004) derived various χ2-tests for assessing the contribution
of predictor variables to the SDR directions. On the basis of these tests, Li et al. (2005) pro-
posed a backward subset selection method for selecting significant predictors. Following the
recent trend of using the L1- or L2-penalty for variable selection, Zhong et al. (2005) proposed
to regularize the sample covariance matrix of the predictor variables in SIR and developed a
procedure called regularized SIR for variable selection. Li (2007) proposed sparse SIR (SSIR)
to obtain shrinkage estimates of the SDR directions. Bondell and Li (2009) further adopted the
non-negative garrotte method for estimating the SDR directions and showed that the resulting
method is consistent in variable selection.

The majority of the aforementioned methods take a two-step approach to variable selection
under the SDR model. The first step is to perform dimension reduction, i.e. to estimate the
SDR directions; and the second step is to select the relevant variables by using statistical testing
or shrinkage methods. Because these methods need to estimate the covariance and conditional
covariance matrices of X , both of which are of dimensions p×p, the effectiveness and robust-
ness of the two-step approach are questionable when p is large relative to n. Zhu et al. (2006) have
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shown that the accuracy of estimation of SDR directions deteriorates as p increases. In other
words, the more irrelevant variables there are, the more likely a method fails to estimate the
SDR directions accurately, and the less likely the method identifies the true relevant predictor
variables.

In this paper, we propose correlation pursuit (COP), which is a stepwise procedure for simul-
taneous dimension reduction and variable selection under the SDR model. Similar to projection
pursuit (Friedman and Tukey, 1974; Huber, 1985), COP defines a projection function to mea-
sure the correlation between the transformed response and the projections of X and pursues a
subset of explanatory variables that maximize the projection function. It starts with a randomly
selected subset and iterates between finding an explanatory variable (predictor) that significantly
improves the current projection function to add to the subset and finding an insignificant pre-
dictor to remove from the subset. During each iteration step, COP needs only to consider the
predictors that are currently in the subset and one more predictor outside the subset. Therefore,
COP can avoid the estimation and inversion of p × p covariance and conditional covariance
matrices of X and mitigate the curse of dimensionality. Furthermore, COP performs dimension
reduction and variable selection simultaneously. Therefore, dimension reduction and variable
selection can be mutually enhanced. Our theoretical investigations as well as simulation stud-
ies show that COP is a promising tool for dimension reduction and variable selection in high
dimensional data analysis.

The rest of the paper is organized as follows. In Section 2, we give a brief introduction to
SIR, following a correlation interpretation of SIR that was provided by Chen and Li (1998).
This interpretation was also used in Fung et al. (2002) and Zhou and He (2008) for dimension
reduction via canonical correlation. In the same section, we describe the COP procedure and
derive various test statistics that are used by the procedure. The asymptotic behaviour of the
COP procedure is discussed in Section 3. Several implementation issues of the procedure are
discussed in Section 4. Simulation and real data examples are reported in Sections 5 and 6
respectively. Additional remarks in Section 7 conclude the paper. An abbreviated version of the
proofs of the theorems is provided in Appendix A.

2. Correlation pursuit for variable selection

2.1. Profile correlation and sliced inverse regression
Let η be an arbitrary direction in Rp. We define the profile correlation between Y and η′X, which
is denoted by P.η/, as

P.η/=max
T

[corr{T.Y/, η′X}], .3/

where the maximization is taken over all possible transformations of Y including non-monotone
transformations. The profile correlation P.η/ reflects the largest possible correlation between
a transformed response T.Y/ and the projection η′X. Let η1 be the direction that maximizes
P.η/ subject to η′Ση = 1, i.e. η1 = arg maxη′Ση=1{P.η/}. We refer to η1 as the first principal
direction for the profile correlation between Y and X and call P.η1/ the first profile correla-
tion. Direction η1, or its projection η′

1X, may not entirely characterize the dependence between
Y and X. Using P.η/ as the projection function again, we can look for a second direction,
which is denoted by η2, which is uncorrelated with η′

1X, i.e. η′
2Ση1 = 0, and maximizes P.η/,

i.e. η2 = argmaxη:η′Ση1=0{P.η/}: We refer to η2 as the second principal direction and P.η2/ as
the second profile correlation. This procedure can be continued until no more directions can
be found that are orthogonal to the directions obtained and have a non-zero profile correla-
tion with Y. Suppose that K̃ principal directions exist between Y and X , which are η1, η2, . . . ,
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and ηK̃, with the corresponding profile correlations P.η1/ � P.η2/ � . . . P.ηK̃/ > 0. We need to
impose the following condition to establish the connection between the principal directions and
the SDR directions under the SDR model.

Condition 1 (linearity condition). For any η in Rp, E.η′X|B′X/ is linear in B′X, where B is
as defined in equation (1).

Proposition 1. Under the SDR model and the linearity condition, the principal directions
η1, η2, . . . , ηK̃ are in the central space S.B/.

To make this paper self-sufficient, we have included the proof of proposition 1 in Appendix
A. Based on the proposition, the principal directions are indeed SDR directions. In general,
K̃ < K. When the link function f is symmetric along a direction, using correlation alone may
fail to recover this direction. For example, if Y =X2

1 + ", the profile correlation between Y and
X1 will always be 0. To exclude this possibility, we follow the convention in the SDR literature
to impose the following condition.

Condition 2 (coverage condition). The number of principal directions of profile correlation is
equal to the dimensionality of the central subspace, i.e. K̃ =K.

Under both the linearity and the coverage conditions, the principal directions η1, η2, . . . , ηK

form a special basis of the central subspace S.B/, i.e. S.B/ = span.η1, η2, . . . , ηK/. This basis
is uniquely defined and is the estimation target of SIR. In the rest of the paper, for ease of
discussion, we use β1, β2, . . . , βk and η1, η2, . . . , ηK, interchangeably.

Chen and Li (1998) showed that, at the population level, there is an explicit solution for the
principal directions. In the proof of their theorem 3.1, Chen and Li (1998) derived that

P2.η/= η′ var{E.X|Y/}η

η′Ση
≡ η′Mη

η′Ση
, .4/

where M=Δ var{E.X|Y/} is the covariance matrix of the expectation of X given Y. Furthermore,
the principal directions of profile correlation are the solutions of the eigenvalue decomposition
problem

Mvi =λiΣvi, v′
iΣvi =1, for i=1, 2, . . . , K; .5/

λ1 �λ2 �. . . �λK > 0: .6/

The principal directions η1, η2, . . . , and ηK are the first K eigenvectors of Σ−1M, and their
corresponding eigenvalues are exactly the squared profile correlations, i.e. P2.ηi/ =λi for i =
1, 2, . . . , K.

Given independent observations {.xi, yi/}i=1,:::,n of .X, Y/, where xi = .xi1, . . . , xip/′, Σ can
be estimated by the sample covariance matrix,

Σ̂=

n∑
i=1

.xi − x̄/.xi − x̄/′

n−1
, .7/

where x̄ is the sample mean of {xi}. Li (1991) proposed the following SIR procedure to estim-
ate M. First, the range of {yi}n

i=1 is divided into H disjoint intervals, which are denoted as
S1, . . . , SH . For h = 1, . . . , H , the mean vector x̄h = n−1

h Σyi∈Sh
xi is calculated, where nh is the

number of yis in Sh. Then, M is estimated by
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M̂ =

H∑
h=1

nh.x̄h − x̄/. x̄h − x̄/′

n
, .8/

and the matrix Σ−1M is estimated by Σ̂
−1

M̂. The first K eigenvectors of Σ̂
−1

M̂, which are
denoted by η̂1, η̂2, . . . , η̂K, are used to estimate the first K eigenvectors of Σ−1M or, equivalently,
the principal directions η1, η2, . . . , ηK respectively. The first K eigenvalues of Σ̂

−1
M̂, which are

denoted by λ̂1, λ̂2, . . . , λ̂K, are used to estimate the eigenvalues of Σ−1M or, equivalently, the
squared profile correlations λ1, λ2, . . . , λK respectively.

2.2. Correlation pursuit
The SIR method needs to estimate the two p×p covariance matrices Σ and M , and to obtain
the eigenvalue decomposition of Σ̂

−1
M̂. When a large number of irrelevant variables are present

and the sample size n is relatively small, Σ̂ and M̂ become unstable, which leads to very inaccu-
rate estimates of principal directions η̂1, η̂2, . . . , η̂K (Zhu et al., 2006). As a consequence, those
shrinkage-based variable selection methods that rely on η̂1, η̂2, . . . , η̂K often perform poorly for
the SDR model when p is large. We here propose a stepwise SIR-based procedure for simulta-
neous dimension reduction (i.e. estimating the principal directions) and variable selection (i.e.
identifying true predictors). Our procedure starts with a collection of randomly selected predic-
tors and iterates between an addition step, which selects and adds a predictor to the collection,
and a deletion step, which selects and deletes a predictor from the collection. The procedure
terminates when no new addition or deletion occurs.

2.2.1. Addition step
Let A denote the collection of the indices of the selected predictors and XA the collection of
the selected variables. Applying SIR to the data involving only the predictors in XA, we obtain
the estimated squared profile correlations λ̂A

1 , λ̂A
2 , . . . , λ̂A

K . Superscript A indicates that the es-
timated squared profile correlations depend on the current subset of selected predictors. Let Xt

be an arbitrary predictor outside A and A+ t =A∪{t}. Applying SIR to the data involving the
predictors in A+ t, we obtain the estimated squared profile correlations λ̂A+t

1 , λ̂A+t
2 , . . . , λ̂A+t

K .
Because A⊂A+ t, it is easy to see that λ̂A

1 � λ̂A+t
1 . The difference λ̂A+t

1 − λ̂A
1 reflects the amount

of improvement in the first profile correlation due to the incorporation of Xt . We standardize
this difference and use the resulting test statistic

COPA+t
1 = n.λ̂

A+t

1 − λ̂
A
1 /

1− λ̂
A+t

1

, .9/

to assess the significance of adding Xt to A in improving the first profile correlation. Similarly,
the contributions of adding Xt to the other profile correlations can be assessed by

COPA+t
i = n.λ̂

A+t

i − λ̂
A
i /

1− λ̂
A+t

i

, .10/

for 2 � i � K. The overall contribution of adding Xt to the improvement in all the K profile
correlations can be assessed by combining the statistics COPA+t

i into one single test statistic

COPA+t
1:K =

K∑
i=1

COPA+t
i : .11/
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We further define that

COP
A
1:K =maxt∈Ac .COPA+t

1:K /: .12/

Let Xt̄ be a predictor that attains COP
A
1:K, i.e. COP

A
1:K = COPA+t̄

1:K , and let ce be a prespecified
threshold (details about its choice are deferred to the next two sections). Then, if COP1:K

A
> ce,

we add t̄ to A; otherwise, we do not add any variable.

2.2.2. Deletion step
Let Xt be an arbitrary predictor in A and define A− t =A−{t}. Let λ̂

A−t

1 , λ̂
A−t

2 , . . . , λ̂
A−t

K be
the estimated squared profile correlations based on the data involving the predictors in A− t

only. The effect of deleting Xt from A on the ith squared profile correlation can be measured
by

COPA−t
i = n.λ̂

A
i − λ̂

A−t

i /

1− λ̂
A
i

, .13/

for 1� i�K. The overall effect of deleting Xt is measured by

COPA−t
1:K =

K∑
i=1

COPA−t
i , .14/

and the least effect from deleting one predictor from A is then defined to be

COPA
1:K =mint∈A.COPA−t

1:K /: .15/

Let Xt be a predictor that achieves COPA
1:K, and let cd be a prespecified threshold for deletion.

If COPA
1:K <cd, we delete Xt from A; otherwise, no deletion happens.

The asymptotic distributions of the proposed statistics and the selection of the thresholds will
be discussed in the next two sections. Because the procedure described aims to find predictors
that can most significantly improve the profile correlations between Y and X , we call it the COP
procedure. Below we summarize the COP algorithm.

Step 1: set the number of principal directions K and the threshold values ce and cd.
Step 2: randomly select K +1 variables as the initial collection of selected variables A.
Step 3: iterate until no more addition or deletion of predictors can be performed; in the
addition step,

(a) find t̄ such that COPA+t̄
1:K =COP

A
1:K and

(b) if COP
A
1:K >ce, add t̄ to A, i.e. let A=A+ t̄;

in the deletion step,

(a) find t such that COPA−t

1:K =COPA
1:K and

(b) if COPA
1:K <cd, delete t from A, i.e. let A=A− t.

Step 4: output A.

3. Theoretical properties

3.1. Asymptotic distributions of test statistics in correlation pursuit
Let us first consider an addition step. We assume that SIR uses a fixed slicing scheme relative to
the number of observations n, i.e. the slices S1, S2, . . . , SH are fixed (defined by the range of the
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response variable) but the number of observations in each slice goes to ∞. Let Xt be an arbitrary
predictor in Ac. Under the null hypothesis H0 that all the predictors in Ac are irrelevant, we have
ηt1 =ηt2 = . . . =ηtK =0. Recall that the statistics we propose to measure the contributions of Xt

to the K profile correlations are .COPA+t
1 , COPA+t

2 , . . . , COPA+t
K /′, and to measure the overall

contribution of Xt by COPA+t
1:K . To establish the asymptotic distributions of these statistics, we

need to impose a condition on the conditional expectation of Xt given XA.

Condition 3 (regression condition). E.Xt|XA/ is linear in XA.

Theorem 1. Assume that conditions 1 and 2 hold, condition 3 holds for .XA, Xt/ for any
Xt ∈XAc , and the squared profile correlations λ1, λ2, . . . , λK are positive and different from
each other. Then, for any given fixed slicing scheme, under the null hypothesis H0 that all the
predictors in Ac are irrelevant, we have that

.COPA+t
1 , COPA+t

2 , . . . , COPA+t
K /→ .Z2

1t , Z2
2t , . . . , Z2

Kt/ .16/

in distribution and

COPA+t
1:K →

K∑
l=1

Z2
lt .17/

in distribution as n → ∞. Here, .Z1t , Z2t , . . . , ZKt/ follows the multivariate normal distri-
bution with mean 0 and covariance matrix WKt . The explicit expression of WKt is given in
Appendix A.

The asymptotic distributions in theorem 1 can be much simplified if we impose the following
condition on the variance of the conditional expectation of Xt given XA.

Condition 4 (constant variance condition). E[{Xt −E.Xt|XA/}2|XA] is a constant.

Corollary 1. Assume that conditions 1 and 2 hold, conditions 3 and 4 hold for .XA, Xt/

for Xt ∈XAc and the squared profile correlations λ1, λ2, . . . , λK are positive and different from
each other. Then, for any given fixed slicing scheme, under the null hypothesis H0 that all the
predictors in Ac are irrelevant, we have that COPA+t

1 , COPA+t
2 , . . . , COPA+t

K are asymptotically
independent and identically distributed as χ2.1/, and COPA+t

1:K is asymptotically χ2.K/.

Theorem 1 and corollary 1 characterize the asymptotic behaviours of the test statistics for an
arbitrary Xt in Ac. In the COP procedure, however, the predictor that attains the maximum value
of COPA+t

1:K among t ∈Ac, which is COP
A
1:K, is considered a candidate predictor to enter A. Our

next theorem characterizes the joint asymptotic behaviour of {COPA+t
1:K }t∈Ac as well as that of

COP
A
1:K.

The linearity, regression and constant variance conditions together are more general than
the normality assumption on X because they only need to hold for the basis of the central
subspace (e.g. B or η1, . . . , ηK) and a given subset of predictors (e.g. A). If we require that the
conditions hold for any projection and any given subset of the predictors, however, then it is
equivalent to requiring that X follows a multivariate normal distribution. To understand the
joint behaviour of all the COP statistics, in what follows we impose the normality assumption
on X.

Let A = {tj}d
j=1 and Ac = {tj}p

j=d+1 denote the collection of currently selected predictors
and its complement respectively. Let ΣA = cov.XA/, ΣAc = cov.XAc /, ΣAAc = cov.XA, XAc /

and Σ̃Ac =ΣAc −ΣAcAΣ−1
A ΣAAc . Note that ΣAcA =Σ′

AAc . Let ã = .ã1, ã2, . . . , ãp−d/′ be the
vector of the diagonal elements of Σ̃Ac . Define DAc =diag.ã1, ã2, . . . , ãp−d/, and define UAc =
D

−1=2
Ac Σ̃Ac D

−1=2
Ac .
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Theorem 2. Assume that

(a) X follows a multivariate normal distribution,
(b) the coverage condition holds and
(c) the squared profile correlations λ1, λ2, . . . , λK are non-zero and different from each other.

Then, for any fixed slicing scheme, under the null hypothesis H0 that all the predictors in Ac

are irrelevant, we have

.COPA+td+1
1:K , COPA+td+2

1:K , . . . , COP
A+tp
1:K /

D→
(

K∑
k=1

z2
k,d+1, . . . ,

K∑
k=1

z2
k,p

)
, .18/

and

COP
A
1:K

D→max
t∈Ac

(
K∑

k=1
z2

k,t

)
.19/

as n→∞. Here zk = .zk,d+1, . . . , zk,p/ for k =1, . . . , K are mutually independent and each zk

follows a multivariate normal distribution with mean 0 and covariance matrix UAc :

We now consider deletion steps of the COP procedure. We let A denote the current collec-
tion of selected predictors before a deletion step, and we let Xt be an arbitrary predictor in A.
Note that COPA−t

k =COPÃ+t
k , where Ã=A− t for 1�k �K. Therefore, results similar to those

stated in theorem 1 and corollary 1 can be obtained for .COPA−t
1 , COPA−t

2 , . . . , COPA−t
K / and

COPA−t
1:K after some modifications described below. First, our current ‘null hypothesis’, which

is denoted as H0t , is that Xt and the predictors in Ac are irrelevant. Second, the regression and
constant variance conditions need to be imposed on the conditional expectation of Xt given XÃ
instead. The asymptotic distribution of COPA

1:K, however, turns out to be fairly complicated if
not entirely elusive, because there is not a common null hypothesis for all Xt ∈A. In what follows,
we shall establish two strong results that have implications for properly selecting the thresholds
ce and cd, as well as for the consistency of the COP procedure in selecting true predictors.

3.2. Selection consistency of correlation pursuit
Let T be the collection of the true predictors under the SDR model. The principal profile
correlation directions are η1, η2, . . . , ηK, which form a basis of the central subspace. Assume
that S1, . . . , SH is a fixed slicing scheme that is used by SIR. Let ph = P.y ∈ Sh/, vK = .η′

1X −
E.η′

1X/, . . . , η′
KX−E.η′

KX//′ and

MH ,K =
H∑

h=1
phLh,KL′

h,K, .20/

where Lh,K = E.vK|Y ∈ Sh/. A few more conditions are needed for the results that we state in
the next two theorems.

Condition 5. X follows a multivariate normal distribution with covariance matrix Σ such that
τmin �λmin.Σp/�λmax.Σp/�τmax, where τmin and τmax are two positive constants, and λmin.·/
and λmax.·/ are the minimum and maximum eigenvalues of a matrix respectively.

Condition 6. There is a constant ωH > 0 such that λmin.MH ,K/>ωH:

Condition 7. There are constants σ2
0 and υ > 0 such that, for any slice Sh and any two pre-

dictors Xi and Xj, var.Xj|Y ∈ Sh/ � σ2
0 and var.XiXj|y ∈ Sh/ � σ2

0 for all i, j = 1, . . . , p, and
h=1, . . . , H: In addition,

E.|Xj|l|Y ∈Sh/� l!
2

var.Xj|Y ∈Sh/υl−2
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and

E.|XiXj|l|Y ∈Sh/� l!
2

var.XiXj |Y ∈Sh/υl−2, for l�2:

Condition 8.Let ηj = .ηj1, ηj2, . . . , ηjK/′ in which ηjk is the coefficient of Xj in the kth principal
correlation direction ηk. There is a positive constant 
>0 and a non-negative constant ξ0, such
that ‖ηj‖2 >
n−ξ0 for j ∈T , where ‖·‖ denotes the standard L2-norm.

Condition 9. limn→∞.p/=∞ and p=o.n�0/ with �0 �0 and 2�0 +2ξ0 < 1:

Condition 5 ensures that the variances of the predictors are on a comparable scale and that
they are not strongly correlated. Condition 6 assumes a lower bound for the eigenvalues of
MH ,K, which is slightly stronger than the coverage condition that ensures SIR to recover all the
SDR directions. Condition 7 imposes conditions on the moments of the conditional expecta-
tions of X given Y ∈Sh so that the Bernstein inequalities hold for the conditional sample means.
Condition 8 assumes that the coefficients of any true predictors do not decrease to 0 too fast as
both n and p increase; otherwise, such predictors will not be identifiable asymptotically. Con-
dition 9 allows p to increase as n increases, but their rates are constrained. Similar conditions
have been used by others for establishing variable selection results for stepwise procedures in
linear regression (Wang, 2009; Fan and Lv, 2008).

Theorem 3. Let A be the set of currently selected predictors and let T be the set of true
predictors. Let ϑ=
ωHτ2

min=2τmax: Assume that conditions 5–9 hold. Then, we have

P{ min
A:Ac∩T �=∅

max
t∈Ac∩T

.COPA+t
1:K /�ϑn1−ξ0}→1, .21/

for any fixed slicing scheme as n→∞.

The probability statement (21) is not just about one given collection of predictors. It con-
siders all the possible collections that do not include all the true predictors yet, i.e. {A : Ac ∩
T �= ∅}. In other words, it considers all the possible scenarios where the null hypothesis H0
is not true. Further note that maxt∈Ac∩T .COPA+t

1:K / �= COP
A
1:K. Because maxt∈Ac .COPA+t

1:K / �
maxt∈Ac∩T .COPA+t

1:K /, from equation (21), we have

P{ min
A:Ac∩T �=∅

.COP
A
1:K/�ϑn1−ξ0}→1: .22/

This result implies that by setting ce to ϑn1−ξ0 or smaller, if the COP procedure has not collected
all the true predictors yet, then with probability going to 1 (as n→∞) it will continue to select
a predictor to the current collection. Thus, the addition step of COP will not stop until all the
true predictors have been selected. Another way to interpret expression (22) is that the selection
power of the COP procedure converges to 1 asymptotically.

Theorem 4. Assume that conditions 5–9 hold. Then we have

P{ max
A:Ac∩T =∅

max
t∈Ac

.COPA+t
1:K /<Cn�}→1, .23/

for �> 1
2 +�0, and any positive constant C, under any fixed slicing scheme with n→∞.

Theorem 4 has two implications. The first regards the addition step of COP. Once all the true
predictors have been selected, i.e. Ac ∩T =∅, the probability that it will select a false predic-
tor from Ac converges to 0. The second implication concerns the deletion step. Consider one
collection of selected predictors Ã and assume that Ã contains all the true predictors and also



858 W. Zhong, T. Zhang, Y. Zhu and J. S. Liu

some irrelevant ones, i.e. Ã⊃T . Clearly,

COPÃ
1:K � min

t∈Ã−T
.COPÃ−t

1:K /� max
A:Ac∩T =∅

max
t∈Ac

(
K∑

k=1
COPA+t

k

)
: .24/

Therefore,

P.COPÃ
1:K <Cn�/→1: .25/

In other words, with probability going to 1, the COP procedure will delete an irrelevant predictor
from the current collection.

One possible choice of the thresholds is χ2
e = ϑn1−ξ0 and χ2

d = ϑn1−ξ0=2. From theorem 3,
asymptotically, the COP algorithm will not stop selecting variables until all the true predictors
have been included. Moreover, once all the true predictors have been included, according to
theorem 4, all the redundant variables will be removed from the selected variables.

4. Implementation issues

When implementing the COP algorithm, we need to specify the number of profile correlation
directions K , the thresholds for the addition and deletion steps ce and cd, and the slicing scheme,
particularly the number of slices H. A proper specification of these tuning parameters is critical
for the success of the COP algorithm.

4.1. Slicing schemes and the choice of H
Li (1991) suggested that, in terms of estimation, the performance of SIR is robust to the number
of slices in general. The COP algorithm uses SIR to derive test statistics for selecting variables.
It is of interest to understand the effect of a slicing scheme on the testing procedures involved.
Again, we consider an addition step in the COP procedure. Let A be the current collection of
selected predictors. Let Xt be an arbitrary predictor in Ac.

Theorem 5. Assume that X follows a multivariate normal distribution. Then, for any given
fixed slicing scheme, we have

P

(
COPA

1:K

n
�CH ,A+t

)
→1, as n→∞, .26/

where

CH ,A+t = .η̃t,A/′MH ,Kη̃t,A=σ2
t,A, .27/

σ2
t,A =var.Xt|XA/, η̃t,A = cov.Xt , vK|XA/ and MH ,K is defined in equation (20).

The difference between theorem 1 and theorem 5 is that the latter does not assume that Xt

is an irrelevant predictor. When Xt is indeed a true predictor, then ηt is not a zero vector and
maxt∈Ac∩T .CH ,A+t/ is greater than 0. The larger CH ,A+t is, the more likely Xt will be added
to A. The next result shows that a finer slicing scheme leads to higher power for the addition
step by COP. For any two different slicing schemes S = .S1, . . . , SH1/ and S′ = .S′

1, . . . , S′
H2

/, we
say that S′ is a refinement of S, which is denoted by S′ �S, if, for any S′

h′ ∈S′, there is an Sh ∈S

such that S′
h′ ⊆Sh.
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Proposition 2. Suppose that S and S′ are two slicing schemes such that S′ �S. Then, for any
η ∈RK, we have

η′MH2,Kη �η′MH1,Kη, .28/

where MH2,K and MH1,K are defined as in equation (20) under the slicing schemes S′ and S
respectively.

Proposition 2 implies that the constant CH ,A in theorem 5 becomes larger when a finer slicing
scheme is used. This further suggests that the power of the COP procedure in selecting true
predictors tends to increase if a slicing scheme uses a larger number of slices. However, when
a slicing scheme uses a larger number of slices, the number of observations in each slice will
decrease, which makes the estimate of E.X|y∈Sh/ less accurate and further makes the estimates
of M = cov{E.X|Y/} and its eigenvalues λ1, . . . , λK less stable. The success of the COP proce-
dure hinges on a good balance between the number of slices and the number of observations
in each slice. We observed from intensive simulation studies that, with a reasonable number of
observations in each slice (say 20 or more), a large number of slices is preferred.

4.2. Choice of ce and cd
Section 3 has characterized the asymptotic distributions or behaviours of the test statistics that
are involved in the COP procedure. In theory, these results (theorems 4 and 5) can be used for
choosing the thresholds ce and cd. In practice, however, these thresholds should be used with
much caution because of the following concerns. First, the distributions that were obtained in
Section 3 are for a single addition or deletion step and under various assumptions. Second,
the distributions are valid only in an asymptotic sense. In what follows, we propose to use a
cross-validation (CV) procedure for selecting ce and cd.

Let {αi}1�i�d be a prespecified grid on a subinterval in .0, 1/ and {χ2
αi,K}1�i�d be the collec-

tion of the 100αith percentile of χ2
K. For convenience, we consider only the m pairs of ce =χ2

αi,K
and cd =χ2

αi−0:05,K for 1� i�m. Note that cd <ce and that there is only one tuning parameter
that we need to determine. We follow the general fivefold CV scheme to select the best pair of
ce and cd. We randomly divide the original data into five equal-sized subsets and then apply
the COP procedure to any four subsets to generate the estimation and variable selection results.
The remaining subset of the data is used to test the model and to generate a performance mea-
surement. The performance measurements are averaged and the result is used as the CV score.
We choose the pair of ce and cd that mazimizes the CV score.

We define the performance measure that is used in the CV procedure as follows. Suppose that
A is the collection of selected predictors and η1,A, . . . , ηK,A are the estimates of the principal
profile correlation directions produced by applying the COP procedure to the training data set.
We consider the first principal profile correlation direction first. Recall that η1,A is the direction
that achieves the maximum correlation of a linear projection of X and the transformed response
Y , and the optimal transformation is T1.Y/=E.η′

1,AX|Y/ (theorem 3.1 in Chen and Li (1998)).
With η1,A estimated by η̂1,A by using the training data, we apply LOESS proposed by Cleveland
(1979) to fit T1.Y/ using the training data and we denote the fitted transformation as T̂ 1.·/. Let
X̃ and Ỹ be the data matrix and the response vector of the testing data set. Then, the squared
profile correlation between X̃ and Ỹ based on the direction η̂1,A and transformation T̂ 1.·/ is
computed as corr2{T̂ 1.Ỹ /, η̂′

1,AX̃}. Similarly, the squared profile correlations between X̃ and Ỹ

along η̂2,A, . . . , η̂K,A can be calculated. The overall performance measure is defined to be

PC=
K∑

k=1
corr2{T̂ k.Ỹ /, η̂′

k,AX̃}: .29/
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The CV score for any pair .ce, cd/ is defined to be the average PC over the five possible partitions
of the training–test data sets.

4.3. Selection of the number of directions K
To determine K , the number of principal profile correlation directions, we adopt a Bayesian
information criterion type of criterion proposed by Zhu et al. (2006). For any given K between
1 and J , where J � max.n, p/ is a reasonable upper bound chosen by the user, we apply the
COP procedure with K = k. Suppose that the resulting collection of the selected predictors is
Ak and the cardinality of Ak is pk. Using the data involving only the selected predictors, we can
estimate M =cov{E.XAk

|Y/} as before and denote the result as M̂. Let θ̂1 � θ̂2 � . . . � θ̂p be the
eigenvalues of M̂ + Ipk

, where Ipk
is the pk ×pk identity matrix, and let τ be the number of θ̂is

that are greater than 1. Define

G.k/=− log{L.k/}+ log.n/

2
k.2pk −k +1/, .30/

where log{L.k/}=Σp
i=min.τ ,k/+1{log.θ̂i/+1− θ̂i}. We choose K =argmin1�k�J{G.k/}. In the

original criterion that was proposed by Zhu et al. (2006), they showed that the criterion pro-
duces a consistent estimate of K for fixed pk. Our simulation study shows that the modified
criterion leads to the correct specification of K for the COP procedure and can be generally
used in practice.

5. Simulation study

We have performed extensive simulation studies to compare the COP algorithm with a few exist-
ing variable selection methods and we shall present three examples in this section. When imple-
menting the COP algorithm in these examples, we use the CV procedure and the G information
criterion that was discussed in the previous section to select the thresholds ce and cd and the
dimensionality K respectively. The grid that was used for selecting ce is {χ2

0:90,K, χ2
0:95,K, χ2

0:99,K,
χ2

0:999,K, χ2
0:9999,K}, and the associated grid for selecting cd is {χ2

0:85,K, χ2
0:90,K, χ2

0:94,K, χ2
0:949,K,

χ2
0:9499,K}. The range that was used for selecting K is from 1 to 4 (i.e. J =4). For SSIR, we used

the grid {0, 0:1, . . . , 0:9, 1}×{0, 0:1, . . . , 0:9, 1} to select the pair of tuning parameters that leads
to its best performance. Both COP and SSIR involve slicing the range of the response variable,
for which we use the same scheme to facilitate fair comparison.

5.1. Linear models
In this example, we consider the linear model

Y =Xβ +σ", .31/

where X = .X1, X2, . . . , Xp/′ follows a p-variate normal distribution with mean 0 and covari-
ances cov.Xi, Xj/ = ρ|i−j| for 1 � i, j � p, and " is independent of X and follows N.0, 1/. The
variable selection methods that we compare the COP procedure with include the lasso, SCAD
(Fan and Li, 2001), MARS and SSIR (Li, 2007). The R packages SIS, lars and mda are used to
run SCAD, the lasso and MARS respectively. The tuning parameters that are involved in SCAD
and the lasso are selected by CV. We use the code that was provided by the original authors
to run SSIR. In this example, we consider two specifications of the linear model given below:
scenario 1,

p=8, β = .3, 1:5, 2, 0, 0, 0, 0, 0/′, σ =3, ρ=0:5;

scenario 2,
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p=1000, β = .3, 1:5, 1, 1, 2, 1, 0:9, 1, 1, 1, 0, . . . , 0/′, σ =1, ρ=0:5:

Under scenario 1, model (31) involves three true predictors and five irrelevant variables, and
was originally used in Tibshirani (1996) and Fan and Li (2001) to demonstrate the empir-
ical performances of the lasso and SCAD. We randomly generated 100 data sets from sce-
nario 1, each with 40 data points (i.e. n = 40), and applied the aforementioned methods to
the data sets. Two quantities were used to measure the variable selection performance of each
method, which are the average number of irrelevant predictors falsely selected as true pre-
dictors (which is denoted by FP) and the average number of true predictors falsely excluded
as irrelevant predictors (which is denoted by FN). Under scenario 1.1, the FPs and FNs
range from 0 to 5 and from 0 to 3 respectively, with small values indicating good perfor-
mances in variable selection. The FP- and FN-values of the methods tested are reported in
Table 1.

Under scenario 2, model (31) involves 10 true predictors and 990 irrelevant predictors and is
clearly more challenging than scenario 1. We randomly generated 100 data sets each with 200
data points (i.e. n = 200) from scenario 2. In each data set, n < p. Similarly to scenario 1, we
applied the methods mentioned above to the data sets and report the FP- and FN-values of
these methods in Table 1. The tuning parameters in all these methods are determined by CV.

From the left-hand panel of Table 1, under scenario 1, SSIR has the lowest FP-value (FP=
0:19), i.e. the average number of irrelevant variables selected by SSIR is 0.19, and COP has the
third lowest FP-values (0.71). The other methods tend to have more false positive results than
SSIR and COP. In terms of FNs, the order of the methods ranked from the lowest to the highest
is MARS, SCAD, the lasso, COP and SSIR. The relative sub-par performance of COP and
SSIR is because these two methods are developed for variable selection under models that are
more general than the linear model.

From the right-hand panel of Table 1, under scenario 2, COP has the lowest FP-value (FP=
2:28). In terms of FN, the lasso and MARS have the lowest value with COP following modestly
behind. Compared with MARS, COP has a much lower FP-value and a slightly higher FN-
value. SSIR breaks down under scenario 2 because the variance–covariance matrix of X is no
longer invertible. In terms of both FP and FN, COP outperformed SCAD under this scenario.
One explanation for this comparison result is that SCAD involves non-convex optimization and
can be unstable in implementation.

Table 1. Performance comparison under linear models†

Method Results for p=8, n=40, Results for p=1000, n=200,
σ =3, ρ=0.5 σ =1, ρ=0.5

FP (0, 5) FN (0, 3) FP (0, 990) FN (0, 10)

LASSO 0.77 (0.093) 0.16 (0.037) 8.87 (0.586) 0.00 (0.000)
SCAD 0.67 (0.094) 0.10 (0.030) 6.05 (0.926) 1.16 (0.150)
MARS 4.00 (0.059) 0.04 (0.020) 30.64 (0.165) 0.00 (0.000)
SSIR 0.19 (0.051) 0.96 (0.068) ‡ ‡
COP 0.71 (0.080) 0.56 (0.066) 2.28 (0.203) 0.75 (0.095)

†FP is the average number of irrelevant variables that are falsely selected
by the method, and FN is the average number of true variables that are
falsely excluded by the method; the numbers in parentheses are the stan-
dard error of FP or FN.
‡The algorithm broke down.
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5.2. Non-linear multiple-index models
In this example, we consider the multiple-index model

Y = X1 +X2 + . . .+Xd

0:5+ .1:5+X2 +X3 +X4/2 +σ", .32/

where X1, . . . , Xp are independent identically distributed N.0, 1/ random variables, " is N.0, 1/

and independent of X , and d and σ are parameters that need to be further specified. This model
was originally used in Li (1991) for demonstrating the performance of SIR. It is not difficult
to see that, given the two projections X1 +X2 + . . .+Xd and X2 +X3 +X4, Y and X are inde-
pendent of each other. The dimensionality of the central subspace of model (32) is 2, and the
collection of true predictors is {X1, . . . , Xd}∪{X2, X3, X4}. Because model (32) is non-linear,
methods that were designed specifically for linear models such as the lasso and SCAD are clearly
at a disadvantage. Therefore, in this example, we compare the performances of MARS, SSIR
and COP only.

By specifying p, d and σ at different values, we have the following three scenarios: scenario 3,

p=30, d =3, σ =0:1;

scenario 4,

p=30, d =3, σ =2;

scenario 5,

p=400, d =8, σ =0:1:

For each scenario, we generated 100 data sets each with 200 observations (i.e. n= 200) and
applied MARS, SSIR and COP to each data set. The resulting FP- and FN-values are reported
in Table 2.

For scenario 3, MARS achieved the lowest FN-value (0.03), but its FP-value was unacceptably
high (16.55); SSIR had the lowest FP-values, but its FN-value was the highest among the three.
The FP- and FN-values of COP were between the extremes. It appears that the performances of
SSIR and COP are similar under scenario 3. For scenario 4, COP outperformed SSIR in terms
of both FP- and FN-values. MARS again achieved the lowest FN-value (0.32) at the expense of

Table 2. Performance comparison under the multiple-index model†

Method Results for σ =0.1, Results for σ =2, Results for σ =0.1,
p=30, d =3 p=30, d =3 p=400, d =8

FP (0, 26) FN (0, 4) FP (0, 26) FN (0, 4) FP (0, 292) FN (0, 8)

MARS 16.55 (0.174) 0.03 (0.017) 17.18 (0.186) 0.32 (0.053) ‡ ‡
SSIR 0.12 (0.033) 0.91 (0.029) 4.14 (0.288) 1.76 (0.115) ‡ ‡
COP 1.88 (0.149) 0.83 (0.038) 3.26 (0.210) 1.71 (0.104) 8.93 (0.576) 0.18 (0.081)

†FP is the average number of irrelevant variables that are falsely selected by the method, and FN
is the average number of true variables that are falsely excluded by the method; the numbers in
parentheses is the standard error of FP or FN.
‡The algorithm broke down.
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an unacceptable FP-value (17.18). Scenario 5 is the most challenging among the three scenarios,
in which the number of predictors exceeds the number of observations. Both MARS and SSIR
broke down under this scenario. However, COP still demonstrated an excellent performance
with its FP- and FN-values reasonably low.

5.3. Heteroscedastic models
In the previous examples, the true predictors affect only the mean response. In this example, we
consider the heteroscedastic model

Y = 0:2"

1:5+
p∑

j=1
βj,1Xj

, .33/

where X = .X1, X2, . . . , Xp/′ follows a p-variate normal distribution with mean 0 and covari-
ances cov.Xi, Xj/ = ρ|i−j| for 1 � i, j � p, " is independent of X and follows N.0, 1/, and βj,1
equals 1 for 1 � j � 8 and equals 0 for j � 9. Note that the central subspace is spanned by
β1 = .β1,1, β2,1, . . . , βp,1/′ and the number of true predictors is 8. We further specify ρ and p in
equation (33) and consider the following three scenarios: scenario 6,

ρ=0, p=500;

scenario 7,

ρ=0, p=1000;

scenario 8,

ρ=0:3, p=1500:

For each scenario, we generated 100 data sets each with n = 1000 observations and applied
MARS, SSIR and COP to the data sets. The FP- and FN-values of the three methods are listed
in Table 3.

Under scenario 6, both SSIR and COP outperformed MARS. The FN-value of SSIR (0.99)
is less than that of COP (1.21), but the FP-value (52.54) is much larger than that of COP (5.71).
Under both scenarios 7 and 8, in which p is much larger than n, SSIR broke down, but COP still
demonstrated excellent performances. The performances of MARS under these two scenarios
were fairly poor.

Table 3. Performance comparison under the heteroscedastic model†

Method Results for ρ=0, Results for ρ=0, Results for ρ=0.3,
n=1000,p=500 n=1000,p=1000 n=1000,p=1500

FP (0, 492) FN (0, 8) FP (0, 992) FN (0, 8) FP (0, 1492) FN (0, 8)

MARS 212.15 (0.428) 4.83 (0.116) 230.33 (0.372) 6.16 (0.129) 236.60 (0.524) 6.84 (0.126)
SSIR 52.54 (1.970) 0.88 (0.149) ‡ ‡ ‡ ‡
COP 5.79 (0.365) 1.21 (0.030) 13.14 (0.734) 1.29 (0.037) 21.36 (0.937) 1.5 (0.039)

†FP is the average number of irrelevant variables that are falsely selected by the method, and FN is the average
number of true variables that are falsely excluded by the method; the numbers in parentheses are the standard
error of FP or FN.
‡The algorithm broke down.
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6. Application: predict gene expression from sequences by using next generation
sequencing data

Embryonic stem cells (ESCs) maintain self-renewal and pluripotency as they have the ability
to differentiate into all cell types. To enhance the understanding of the ESC development, pre-
dictive models, such as regression models, can be constructed in which the gene expression is
regarded as the response variable and various features that are associated with gene regulating
transcription factors (TFs) are taken as the predictors. Examples of such features include motif
scores based on position-specific weight matrices of motifs recognized by the TFs (Conlon et al.,
2003), and ‘ChIP-chip’ log-ratios.

Recently, the emerging next generation sequencing technologies, in particular, ‘RNA-Seq’
and ‘ChIP-Seq’, have offered researchers an unprecedented opportunity to build predictive
models for complex biological processes such as gene regulation. Compared with the tradi-
tional hybridization-based methods, such as microarrays, RNA-Seq and ChIP-Seq provide
more accurate quantification of gene expression and TF–DNA binding locations respectively
(Mortazavi et al., 2008; Wilhelm et al., 2008; Nagalakshmi et al., 2008; Boyer et al., 2005;
Johnson et al., 2007).

To quantify gene expression in RNA-Seq data, one may calculate RPKM, the number of reads
per kilobase of exon region per million mapped reads, which has been shown to be proportional
to the gene expression levels (Cloonan et al., 2008). From ChIP-Seq data, Ouyang et al. (2009)
proposed a feature named the transcription factor association strength (TFAS), which has been
shown to explain a much higher proportion of gene expression variation than traditional pre-
dictors in predictive models. In particular, for each TF, the TFAS for each gene is computed as
a weighted sum of the corresponding ChIP-Seq signal strengths, where the weights reflect the
proximity of the signal to the gene. We here examine whether we can build a better predictive
model for gene expressions by combining both TFASs and motif scores of TFs in mouse ESCs.

To achieve this, we compiled a data set consisting of gene expressions, TFASs and motif scores.
In this data set, the RPKMs were calculated as gene expression levels from RNA-Seq data in
mouse ESCs (Cloonan et al., 2008). The TFASs of 12 TFs were calculated from the ChIP-Seq
experiments in mouse ESCs (Chen et al., 2008). In addition, we supplement this data set with mo-
tif scores of putative mouse TFs. From the TF database TRANSFAC, we compiled a list of 300
mouse TF binding motifs. For each gene, a matching score was calculated by using the scoring
system that was described in Zhong et al. (2005) for each TF binding motif. The matching score
can be considered intuitively as the expected number of occurrences of a TF binding motif on the
gene’s promoter region. To build a predictive model in mouse ESCs, we treat the gene expression
as the response variable and the 12 TFASs as well as the 300 TF motif matching scores as predic-
tors. More precisely, the response is a vector with 12408 entries and the data matrix is a 12408×
312 matrix with .i, j/th entry representing the TFAS score of the ith gene’s promoter region for
TF j if j �12, representing the matching score of the ith gene’s promoter region for TF j if j>12.

We applied COP to this data set. The procedure identified two principal directions and selected
in total 42 predictors. The first squared profile correlation is λ1 =0:67, and the second squared
profile correlation is λ2 = 0:20. Among the 12 TFASs calculated from ChIP-Seq, eight were
selected by COP. In particular, Oct4 is a well-known master regulator regulating pluripotency,
and Klf4 regulates differentiation (Cai et al., 2010). Evidence also suggests that, at these early
stages of development, STAT3 activation is required for self-renewal of ESCs (Matsuda et al.,
1999). Among the 300 TF motif scores, 34 of them are selected by COP. To understand further
what extra information TF motif scores provide, we annotate the functions of the 34 TFs. It is
of interest to note that 24 of the 34 selected motifs correspond to TFs that are either regulators
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Table 4. Motifs identified

Development COUP-TF, AP2, Sp1, CHOP C/EBpalpha, NF-AT
Pax, Pax8, GABP, En1, TTF1
PITX2, NKx2-2, HIXA4, ZF5, PPAR direct repeat 1

Cancer IRF1, EVI1, NF1, GKLF, Whn
VDR, POU6F1, Arnt, Cdx2

8 selected TFASs E2F1, Mycn, ZFx, Klf4
Tcfcp2/1, Oct4, Stat3, Smad1

for development or cancer related; Table 4. Since ESCs are in a developmental phase, it is not
surprising to have active TFs regulating general development. Some recent evidence suggests
that tumour suppressors that control cancer cell proliferation also regulate stem cell self-renewal
(Pardal et al., 2005). Thus, a careful study of these cancer-related TFs could lead to a better
understanding of the stem cell regulatory network.

7. Discussion

The contribution of the COP procedure to the development of variable selection methodologies
for high dimensional regression analysis is twofold. First, it does not impose any assumption
on the relationship between the response variable and the predictors, and the SDR framework
that the COP procedure relies on includes fully non-parametric models as special cases. There-
fore, COP can be considered a model-free variable selection procedure that is applicable in any
high dimensional data analysis. Second, as demonstrated by our simulation studies, the COP
procedure can effectively handle hundreds of thousands of predictors, which can be extremely
challenging to other existing methods for variable selection beyond linear or parametric models.
Like linear stepwise regression, the COP procedure may encounter issues that are typical to step-
wise procedures as discussed in Miller (1984). Nonetheless, we believe that the COP procedure
should become an indispensable member of the repository of variable selection tools and we
recommend its broad use. When a parametric model is postulated for the relationship between
the response and the predictor variables and model-specific variable selection methods are avail-
able, we recommend the use of COP together with these methods as a safeguard against possible
model misidentification. We have implemented the COP procedure using programming language
R, and the R package can be downloaded from http://cran.r-project.org/web/
packages/COP/ or requested from the authors directly.

As a trade-off, the COP procedure imposes various assumptions on the distribution of the
predictors, of which the linearity assumption is the most fundamental and crucial. When the
linearity condition is required to hold for any lower dimensional projection, it is equivalent to
requiring that the joint distribution of the predictors is elliptically contoured (Eaton, 1986). Hall
and Li (1993) established the fact that low dimensional projections from high dimensional data
approximately satisfy the linearity condition, which to a certain degree alleviates the concern of
the linearity assumption and explains why SIR and the COP procedure worked well under mild
violation of the assumption. When the linearity condition is heavily violated, data reweighting
schemes such as the Voronoi reweighting scheme (Cook and Nachtsheim, 1994) can be used
to correct the violation. We plan to incorporate such schemes into the COP procedure in the
future.

When the number of the predictors is extremely large, the performance of the COP pro-
cedure can be compromised. This is also so for variable selection methods under the linear
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model. Lately, Fan and Lv (2008) have advocated a two-step approach to attack so-called ultra-
high dimensionality. The first step is to perform screening to reduce the dimensionality from
ultrahigh to high or moderately high, and then, in the second step, variable selection methods
are applied to identify the true predictors. The same approach can be used for variable selection
under the SDR framework. More precisely, we can apply the forward COP procedure, which
is simply the COP procedure with the deletion step removed, to reduce the dimensionality of
a problem from ultrahigh to moderately high. The forward COP procedure is much easier to
implement and computationally more efficient than the COP procedure. Then, the usual COP
procedure is applied to the reduced data to select the true predictors. This approach is currently
under investigation and the results will be reported in a future publication.
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Appendix A

A.1. Proof of proposition 1
Let S⊥.B/ denote the space of vectors such that, for any ρ ∈ S⊥.B/ and any β ∈ S.B/, ρ′Σβ = 0: Let
S⊥.K̃/ be the space of vectors such that for any ρ∈S⊥.K̃/ ρ′Σηk =0 for k =1, . . . , K̃: We shall show that
S⊥.B/⊆S⊥.K̃/, which means, for any ρ∈S⊥.B/, P.ρ/=0: First, because, for any T , T.Y/⊥η′X|B′X, then

cov{T.Y/, η′X}=E{T.Y/η′X}=E[E{T.Y/|B′X}E.η′X|B′X/]:

Because of the linearity condition, for any ρ∈S⊥.B/, E.ρ′X|B′X/=c1β
′
1X+ . . .+cKβ′

KX, where c1, . . . , cK

are linear coefficients. In addition, since cov.ρ′X, β′
kX/=0 for k=1, . . . , K, E.ρ′X|B′X/=0: Consequently,

corr2{T.Y/, ρ′X}= cov2{T.Y/, ρ′X}
var{T.Y/}var.ρ′X/

=0,

P.ρ/=0 and S⊥.B/⊆S⊥.K̃/: Proposition 1 holds.

A.2. Proof of theorem 1
Without loss of generality, we let A= {1, . . . , d} and t = d + 1: Let X.j/ be the vector of n independent
identically distributed observations of the jth variable for j =1, . . . , d +1. We assume that the predictors
have been centred to have zero sample mean. Denote Xn×j = .X.1/, . . . , X.j// for j =d, d +1: We let

M̂
.j/ =

H∑
h=1

nh

n
X̄

.j/T
h X̄

.j/

h for j =d, d +1

where X̄
.j/

h .j = d, d + 1/ is the average of the first j variables for those individuals whose responses fall
into the hth slice Sh, h=1, . . . , H: Let nh be the number of observations in the hth slice, h=1, . . . , H: Let
λ̂i

.j/ be the ith largest eigenvalue of Σ̂j
−1

M̂.j/ for j = d, d + 1, where Σ̂j is the sample variance–covariance
matrix of Xn×j: It is difficult to see the asymptotic distribution of λ̂i

.d+1/ − λ̂i
.d/ for i = 1, . . . , K directly

based on Σ̂j
−1

M̂.j/ for j =d, d +1: We did some transformations such that the transformed Σ̂j
−1

M̂.d/ (with
eigenvalues unchanged) is a submatrix of the transformed Σ̂j

−1
M̂.d+1/.

Let

γ̂n×1 = .γ̂1, . . . , γ̂n/T = 1
σ̂

{I −Xn×d.XT
n×dXn×d/−1XT

n×d}X.d+1/,
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where σ̂2 is the sample variance of {I −Xn×d.XT
n×dXn×d/−1XT

n×d}X.d+1/: Denote γ̄h =n−1
h Σyi∈Sh

γ̂i: Let γ =
Xd+1 −E.Xd+1|X1, . . . , Xd/, and γn×1 be the n regression error terms of the n observed Xd+1 on X1, . . . , Xd:
Then γn×1 are independent and identically distributed with mean 0 and a finite variance. Under the null
hypothesis H0 :ηd+1, i =0, i=1, . . . , K, we have E.γ|y/=E{E.γ|X1, . . . , Xd/|y}=0 for any y. Let γ̄ be the
mean of γn×1: Then

γ̂n×1 = .γ̂1, . . . , γ̂n/T = 1
σ̂

{I −Xn×d.XT
n×dXn×d/−1XT

n×d}.γn×1 − γ̄/:

With transformations on Σ̂
−1
j M̂

.d/
, we showed that λ̂

.d+1/

i − λ̂
.d/

i for i = 1, . . . , K equals a squared lin-
ear combination of γ̄h: Thus, we just need to show that .γ̄1, . . . , γ̄H / converges to a multivariate nor-
mal distribution, and we complete the proof. Let .z1, . . . , zd/′ =Σd

−1=2.x1, . . . , xd/′. Define four matrices,
AH×H , BH×d , Ed×d and ΓH×d , where AH×H =diag{var.γ|y ∈S1/, . . . , var.γ|y ∈SH /}=σ2, the .h, j/th entry
of BH×d is

√
ph cov.zjγ, γ|y∈Sh/=σ2, the .j, j′/th entry of Ed×d equals cov.zj′γ, zjγ/=σ2, the .h, j/th entry

of ΓH×d is
√

ph E.zj|y ∈Sh/ and σ2 = limn→.σ̂2/=var.γ/: Let Υ be a d ×d matrix and

Υ=ΓT
H×dAH×HΓH×d −ΓT

H×dBH×dΓT
H×dΓH×d −ΓT

H×dΓH×dBT
H×dΓH×d +ΓT

H×dΓH×dEd×dΓT
H×dΓH×d :

Define Q̃ to be a d ×K matrix with jth column qj=
√{λ.d/

j .1−λ.d/
j /}, where qj is the the jth eigenvector of

the limiting matrix limn→∞.Σ̂
−1=2
d M̂

.d/
Σ̂

−1=2
d /, and λ.d/

j = limn→∞.λ̂j
.d//: Then WKt = Q̃TΥQ̃:

A.3. Proof of corollary 1
With an additional condition that E.γ2|X1, . . . , Xd/ is constant, we can show that the asymptotic variance
matrix of .γ̄1, . . . , γ̄H / adopts a special form, with which the asymptotic standard χ2-distribution can be
derived.

A.4. Proof of theorem 2
Without loss of generality, we let A={X1, . . . , Xd}: Following the notation that was used in theorem 1,
let γj =Xj −E.Xj|Xi, i∈A/ for j ∈Ac, and

γ̂j = .γ̂j,1, . . . , γ̂j,n/′ = 1
σ̂j

{In −Xn×d..Xn×d/′Xn×d/−1.Xn×d/′}X.j/:

Let γ̄
j
h =n−1

h Σyi∈Sh
γ̂j, i: Similarly to the proof of theorem 1, we basically show γ̄

j
h for j =d + 1, . . . , p and

h=1, . . . , H converge to a multivariate normal distribution.

A.5. Proof of theorem 3
We use the same notation as defined in the proof of theorem 2. Let γ̄

j
h =n−1

h Σyi∈Sh
γ̂j, i: Let λ̂

.d/

k be defined
as in the proof of theorem 1. First, for any t, COPA+t

1:K �n.ΣK
k=1 λ̂

.d+1/

k −ΣK
k=1 λ̂k

.d//, and

∣∣∣ K∑
k=1

λ̂
.d+1/

k −
K∑

k=1
λ̂

.d/

k

∣∣∣� ∣∣∣ K∑
k=1

.λ.d+1/
k −λ.d/

k /
∣∣∣− ∣∣∣ K∑

k=1
.λ.d+1/

k − λ̂
.d+1/

k /
∣∣∣− ∣∣∣ K∑

k=1
.λ.d/

k − λ̂
.d/

k /
∣∣∣:

Since X follows a multivariate normal distribution, from Li (1991), λ.d/
k =λ.d+1/

k =0 for k>K; then

K∑
k=1

.λ.d+1/
k −λ.d/

k /= lim
n→∞

{tr.Ω̃
.d+1/

/− tr.Ω̂
.d/

/}= lim
n→∞

{
H∑

h=1

nh

n
.γ̄

j
h/2

}
=

H∑
h=1

ph

E2.γj|y ∈Sh/

σ2
j

:

We need to use the two lemmas 1 and 2 that are stated below. The proofs of the two lemmas are omitted
here. From lemma 1,

max
t∈Ac∩T

{
n

(
K∑

k=1
λ̂

.d+1/

k −
K∑

k=1
λ̂

.d/

k

)}
�
ωH n1−ξ0

τ 2
min

τmax
−

∣∣∣ K∑
k=1

n.λ.d+1/
k − λ̂

.d+1/

k /
∣∣∣− ∣∣∣ K∑

k=1
n.λ.d/

k − λ̂
.d/

k /
∣∣∣:

Then, as long as
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max
A⊆{1,:::,p}

{
n

∣∣∣∣∣
K∑

k=1
.λ.d/

k − λ̂
.d/

k /

∣∣∣∣∣
}

�ϑn1−ξ0 =2,

we have

min
A:Ac∩T �=∅

max
t∈Ac∩T

.COPA+t
1:K /�ϑn1−ξ0 :

From lemma 2,

P

(
max

A⊆{1,:::,p}

∣∣∣ K∑
k=1

λ.d/
k −

K∑
k=1

λ̂
.d/

k

∣∣∣>
ϑn−ξ0

2

)
�2Kp.p+1/C1 exp

(
−C2n

1−2ξ0
τ 2

minϑ
2

256K2p2

)
:

Under condition 8, since p=o.n�0 / with 2�0 +2ξ0 <1, P.maxA⊆{1,:::,p} |ΣK
k=1 λ.d/

k −ΣK
k=1 λ̂

.d/

k |>ϑn−ξ0 =2/→
0, and P{minA:Ac∩T �=∅ maxt∈Ac∩T .COPA+t

1:K /�ϑn1−ξ0}→1:

A.6. Proof of theorem 4
Since ∣∣∣ K∑

k=1
λ̂

.d+1/

k −
K∑

k=1
λ̂

.d/

k

∣∣∣� ∣∣∣ K∑
k=1

.λ.d+1/
k −λ.d/

k /
∣∣∣+ ∣∣∣ K∑

k=1
.λ.d+1/

k − λ̂
.d+1/

k /
∣∣∣+ ∣∣∣ K∑

k=1
.λ.d/

k − λ̂
.d/

k /
∣∣∣,

and, with T ⊆A, |ΣK
k=1 .λ.d+1/

k −λ.d/
k /|= 0, then, from lemma 2, P.maxA⊆{1,:::,p} |ΣK

k=1 λ.d/
k −ΣK

k=1λ̂
.d/

k | >
"/→0 for ">Cn�0−1=2 and theorem 4 holds.

Lemma 1. Under the same conditions as in theorem 3, for any A⊆{1, . . . , p} and Ac ∩T �=∅,

max
j∈Ac∩T

{
H∑

h=1
ph E2.γj|y ∈Sh/=σ2

j

}
� τ 2

min
ωH n−ξ0 =τmax > 0:

Lemma 2. Under the same conditions as in lemma 1,

P
(

max
A⊆{1,:::,p}

∣∣∣ K∑
k=1

λ.d/
k −

K∑
k=1

λ̂
.d/

k

∣∣∣>"
)

�2Kp.p+1/C1 exp
(

−C2n
τ 2

min"2

64K2p2

)
:

A.7. Proof of theorem 5
For coherence, we use the same notation as defined in the proof of theorem 1. Without loss of generality,
let A={1, . . . , d} and t = d + 1: Under the assumption that Xn×.d+1/ has a multivariate normal distribu-
tion, we derive the limiting value of .ΣK

k=1 λ̂
.d+1/

k −ΣK
k=1 λ̂

.d/

k / as n →∞ for fixed slices. Let ΞK×K be the
variance–covariance matrix of vK:

Because {X1, . . . , Xd+1} follow a multivariate normal distribution, we have γ = Xd+1 − ρ0 + Σd
i=1 ρiXi

and γ ∼N.0, σ2
d+1/ where the ρi are the coefficients. Since we assume that the response depends only on K

linear combinations of Xn×.d+1/, Ω̃
.d+1/

and Ω̂
.d/

have at most K non-zero eigenvalues, and

K∑
k=1

λ̂
.d+1/

k

tr.Ω̃
.d+1/

/

P→1,

K∑
k=1

λ̂
.d/

k

tr.Ω̂
.d/

/

P→1,

K∑
k=1

λ̂
.d+1/

k −
K∑

k=1
λ̂

.d/

k

tr.Ω̃
.d+1/

/− tr.Ω̂
.d/

/

P→1:
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We have the following three results.

(a) tr.Ω̃
.d+1/

/− tr.Ω̂
.d/

/=ΣH
h=1 nh.γ̄h/2=n:

(b) γ̄h→PE.γ|y ∈Sh/=σd+1, h=1, . . . , H:
(c) Since E.γ|vK/= η̃t,AΞ−1

K×KvK, then

E.γ|y ∈Sh/=E{E.γ|vK/|y ∈Sh}= η̃′
t,AΞ−1

K×KLH ,K:

Combining results (a)–(c) we have ΣH
h=1 nh.γ̄h/2=n→Pη̃′

t,AΞ−1
K×KMH ,KΞ−1

K×Kη̃t,A: Since Ξ−1
K×K = IK×K,

K∑
k=1

λ̂
A+t

k −
K∑

k=1
λ̂

A
k

P→ 1
σ2

d+1

η̃′
t,AMH ,Kη̃t,A,

and theorem 5 holds.

A.8. Proof of proposition 2
Note that η′MH ,Kη =var{E.η′vK|y ∈Sh/} and

var{E.η′vK|y ∈S′
h′/}=var{E.η′vK|y ∈Sh/}+var[var{E.η′vK|y ∈S′

h′/|Sh}]:

Thus, proposition 2 holds.
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