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Abstract

We introduce a dynamic directional model (DDM) for studying brain effective connectivity based 

on intracranial electrocorticographic (ECoG) time series. The DDM consists of two parts: a set of 

differential equations describing neuronal activity of brain components (state equations), and 

observation equations linking the underlying neuronal states to observed data. When applied to 

functional MRI or EEG data, DDMs usually have complex formulations and thus can 

accommodate only a few regions, due to limitations in spatial resolution and/or temporal 

resolution of these imaging modalities. In contrast, we formulate our model in the context of 

ECoG data. The combined high temporal and spatial resolution of ECoG data result in a much 

simpler DDM, allowing investigation of complex connections between many regions. To identify 

functionally segregated sub-networks, a form of biologically economical brain networks, we 

propose the Potts model for the DDM parameters. The neuronal states of brain components are 

represented by cubic spline bases and the parameters are estimated by minimizing a log-likelihood 

criterion that combines the state and observation equations. The Potts model is converted to the 

Potts penalty in the penalized regression approach to achieve sparsity in parameter estimation, for 

which a fast iterative algorithm is developed. The methods are applied to an auditory ECoG 

dataset.
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1 Introduction

A useful nominal taxonomy of brain connectivity relies on three broad categories: 

anatomical, functional and effective (Friston, 1994). Anatomical refers to the network 

architecture, whereas functional and effective connectivity refer to network engagement. 

Specifically, functional refers to relationships (usually via correlations or synchrony) in 

activity while effective refers to directed effect of components on each other. Here we focus 

on effective connectivity, aiming to improve the understanding of functional interaction 

among brain regions, a topic of core interest in neuroscience (Swanson, 2003).

The evaluation of effective connectivity relies on modeling interactions among brain 

regions, and the assumed model depends on the method used to measure brain activity. As 

examples, functional MRI (fMRI), yielding indirect measurements of neuronal activity (the 

blood oxygenation level dependent, BOLD, signal) under an unknown hemodynamic 

response function, possesses relatively high spatial resolution but low temporal resolution (1 

- 2 seconds between images). Electroencephalograph (EEG), in contrast, has high temporal 

resolution (1-2 ms), but relatively poor spatial resolution. Other modalities include 

magnetoencephalography (MEG) and electrocorticography (ECoG, discussed below) in 

humans and a variety of others available for animal studies. Each possesses benefits, 

compromises, processing details and intricacies for the feasibility and methodology for 

studying effective connectivity.

Electrocorticography (ECoG) involves intracranial electrophysiology recordings from 

subdural electrodes implanted directly on the cortical surface for clinical purposes in 

neurosurgical patients with medically intractable seizures or tumors. The combined high 

spatial (diameter 2.3 mm) resolution and temporal resolution (data collected every 1 ms) of 

ECoG data make it an ideal candidate for building effective connectivity models 

(Korzeniewska et al., 2011). Of course, it is not without its limitations, notably including the 

very restricted population available for study, necessarily low subject sample sizes and 

subject-dependent and varying electrode placement locations, all impacting the 

generalizability of ECoG results. Nonetheless, for studying effective connectivity, ECoG 

offers a unique complement to traditional scalp EEG recordings methods (see Bressler and 

Ding, 2002; Boatman-Reich et al., 2010, for a detailed comparison between EEG and 

ECoG).

Effective connectivity is usually characterized by a model on the dynamic interactions 

between brain components (Aertsen and Preissl, 1991; Friston et al., 2004), and the most 

commonly used models include Structural Equation Models (SEM, McIntosh and Gonzalez-

Lima, 1994) and the closely related Dynamic Causal Models (DCM, Friston et al., 2003). 

Here we use a model that can be thought of as a special case of DCM, as it attempts to 

describe the biophysical mechanism of the brain system building from the neuronal level. In 

contrast, most standard applications of SEM evaluate connection strength based on the 

variance-covariance structure of the observed data.
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A DCM requires two parts: (1) neuronal state equations consisting of a set of ordinary 

differential equations (ODE), which describe how instantaneous changes of the neuronal 

activities of system components are modulated jointly by the immediate states of the 

components and experimental inputs; and (2) observation equations linking the underlying 

neuronal states of brain components to the observed data. A DCM can be viewed as a 

continuous time state-space model, parameterizing effective connectivity as coupling 

between the neuronal states of the brain system under the influence of experimental inputs.

Although DCM has been widely used in brain connectivity research, existing 

implementations, primarily within the setting of fMRI, EEG and MEG data (Friston et al., 

2003; David and Friston, 2003; David et al., 2006; Kiebel et al., 2006; Daunizeau et al., 

2011), have two major complications. First, parameter estimation of the DCM is 

computationally difficult, due to the complicated model formulation. Thus the number of 

brain regions included in the model is usually limited. Second, identifiability issues can 

arise, even with only a moderate number of brain components. The current practice in 

addressing this problem is to conduct Bayesian inference, using a highly informative prior, 

introducing subjective knowledge of the existence and strength of connections, and thus 

imposing regularization on the coupled dynamic system. However, a strong prior increases 

the risk of bias, raising concerns on the reliability of the results. These drawbacks are 

alleviated in ECoG, which has high temporal and spatial resolution, and a strong signal-to-

noise ratio (SNR), to evaluate the effective connectivity among many brain regions. We 

propose a new ODE-based model, hinging on the unique properties of ECoG data, and 

develop efficient methods to estimate the model. We refer to this model as a dynamic 

directional model (DDM) to delineate from the general DCM and to avoid confusion with 

the widely used Rubin Causal Model (Rubin, 1974, 1978; Holland, 1986). Though we use 

ECoG as an application of the proposed methods, we note that they have potential 

applicability in many other network studies where multivariate time series data measuring 

temporal changes of system components are collected, and the focus is on investigating 

directional interactions among them.

Anatomical and functional connections between brain regions are commonly believed to be 

biologically expensive, as they take up space and consume energy (Földiák and Young, 

1995; Olshausen and Field, 2004; Anderson, 2005). Therefore, it is reasonable to assume 

that connections between the components of a complex brain system are sparse (Bullmore 

and Sporns, 2009; Micheloyannis, 2012). Sparsely connected brain networks can arise in 

different forms, and we here focus on the one that is decomposable into several functionally-

segregated subnetworks/modules, a network structure called modularity and most relevant to 

brain organization (Tononi et al., 1994; Newman, 2004). A main thrust of this paper is to 

propose a new DDM jointly with a Potts model (Potts, 1952; Graner and Glazier, 1992)—

the Potts-based DDM (PDDM)—for the ODE parameters in the state equations to 

characterize modularity.

To solve for the proposed PDDM, we adopt the log-likelihood based criterion proposed by 

Varah (1982) and Ramsay et al. (2007), in which the neuronal state and observation 

equations are combined into one formula. The time-varying neuronal states of brain 

components are represented by spline bases. The parameters for the state and observation 
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equations are estimated simultaneously by optimizing the log-likelihood criterion. To 

achieve sparsity, we employ a popular penalized log-likelihood based approach in regression 

analysis. This is intuitive, since the ODEs can be viewed as a set of special regression 

models, where temporal functions of neuronal states are predictors and their derivatives are 

the responses. In particular, we convert the Potts model to a penalty term to penalize large 

modules, and identify small functionally segregated sub-networks by minimizing the 

penalized criterion.

The proposed PDDM for the ECoG data is a special ODE model. There is an extensive 

statistical literature on solving ODEs from noisy data (e.g. Li et al., 2002; Huang and Wu, 

2006; Huang et al., 2006; Ramsay et al., 2007; Chen and Wu, 2008). However, these 

methods are mostly effective for low-dimensional cases, and are not directly applicable to 

the ECoG data because either the model is highly case-specific or the associated 

computation is too expensive. By decomposing high-dimensional differential equations into 

several independent low-dimensional ones using the Potts penalty, we greatly reduce the 

computational demand and increase estimation efficiency. As such, besides advancing the 

scientific research in effective brain connectivity, this article also contributes to statistical 

methodology for inference of high-dimensional ODEs.

The rest of the article is organized as follows. In Section 2, we first introduce the general 

DDM for the ECoG data and then propose the Potts-based DDM. Section 3 presents the log-

likelihood based criterion, as well as the induced Potts penalty, for parameter estimation. 

Corresponding optimization strategies for selecting penalty parameters are also proposed. 

We apply the methods to analyze a real ECoG study in Section 4 and conduct simulations in 

Section 5. Section 6 concludes.

2 Directional dynamical model

2.1 The general DCM framework

Before proposing the DDM for ECoG data, we first introduce the general form of the DCMs 

for neurophysiological data, and then describe its existing examples in the context of fMRI 

and EEG/MEG data. Because the brain is a continuous-time physical system changing 

rapidly over time, it is intuitive to model its dynamics by characterizing its instantaneous 

changes. In this line of thought, the neuronal state equations are a set of ODEs, linking the 

derivatives of neuronal states x(t) = (x1(t), . . . , xd(t))′ of d brain components/regions to 

themselves under the influence of experimental inputs. We omit the subscript for subject, 

because the analysis is conducted subject by subject. Among all possible ODE-based 

dynamical models, the one with the Markovian property that the instantaneous changes of 

the system depend only on system states and experimental inputs at that same moment of 

time, is the simplest with least model complexity. The Markovian property is a reasonable 

assumption for a brain system performing a simple task, such as visual, auditory, and motor 

functions, for a short period of time. For more complicated brain functions such as memory, 

a more complicated model may be needed to accommodate the time effect. Let u(t) = 

(u1(t), . . . , uJ(t)) be J experimental input functions corresponding to designed causes (e.g., 

boxcar or stick stimulus functions). The first part of a DCM is the ODEs characterizing 

dynamic changes of the neuronal states:
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(1)

where F1 is usually a set of unknown nonlinear functions describing the neurophysiological 

influences that the present activity of brain regions x(t) and experimental inputs u(t) exert 

upon changes in the others, and the vector θ1 contains all the unknown parameters defining 

the system. Model (1) is deterministic, because each smooth function xi(t) is an average of a 

large number of neuron activities in the local region. The second part of a DCM consists of 

observation equations describing how the underlying neuronal activity causes changes in the 

observed data y in each region:

(2)

where F2 is some known function, θ2 are unknown parameters, and ε(t) are the error terms.

The formulation of F1 and F2 depends on the targeted imaging modality. For fMRI data, the 

neuronal states equations F1 are usually approximated by the first and part of the second 

order Taylor expansions, with a bilinear form that will be specified later (equation (3) in 

Section 2.2). Strong restrictions are imposed on the parameter space to ensure that the 

underlying system is stable over time (hundreds of seconds). The observation equations F2 

include several differential equations characterizing the relationships between the BOLD 

signal, the normalized total deoxy-hemoglobin content, the normalized blood volume 

fraction, and the underlying neuronal activity (Friston et al., 2003; Penny et al., 2004; 

Friston, 2009; Stephan et al., 2007). For EEG/MEG data, F1 describes the interactions 

between three neuron subpopulations (pyramidal, spiny-stellate and inhibitory interneurons, 

respectively, in one of three cortical layers) at multiple signal-source locations (David and 

Friston, 2003; David et al., 2005, 2006), while F2 maps pyramidal cell activities—the 

neuronal subpopulations assumed to give rise to the observed EEG/MEG data— linearly to 

scalp data. With both fMRI and EEG/MEG data, estimation of the DCMs is conducted 

within a Bayesian framework, where strong prior distributions of the parameters are 

imposed to encode the requisite constraints and ensure model identifiability.

2.2 The DDM for ECoG time series

ECoG signals are recorded from electrodes implanted directly over the cortical surface of 

the brain. Electrodes are 2-3 mm in diameter and evenly spaced at 10 mm, center-to-center, 

in 6×8 or 8×8 arrays. The ECoG time series is recorded from all electrodes simultaneously. 

Figure 1(b) shows a 50-ms sample of ECoG data recorded from three electrode channels in 

our application. ECoG recordings are characterized by high signal-to-noise ratios and 

excellent temporal (1-2 ms) and spatial (10 mm) resolution. ECoG recordings from the 

human auditory cortex have been shown recently to be highly reliable and reproducible 

(Cervenka et al., 2013). Resting on the unique properties of the ECoG, below we propose a 

new dynamic directional model (DDM) with a simple formulation to evaluate the effective 

connectivity between many brain components.

At the neuronal state, we use a bilinear approximation to the unknown F1:
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(3)

where A = (Ai1i2)d×d with entry Ai1i2 denoting the effect of component i2 on component i1 

exerted at the current state; Bj = (Bj,i1i2)d×d, j = 1, . . . , J, couples the jth stimulus with the 

neuronal states and non-zero Bj[notdef]i1i2 implies that the effect exerted by component i2 on 

component i1 depends on stimulus j; C = (Cij)d×J with Cij denoting the effect of stimulus j 

on component i; and D = (D1, . . . , Dd)′ with Di denoting the intercept for component i. 

Model (3) is referred to as a “directional” or “causal” model, because it specifies two 

separate parameters Ai1i2 and Ai2i1 for the effect from component i1 to i2 and the effect from 

i2 to i1, respectively, which are allowed to take different values. The same applies to the 

parameters B encoding the stimulus-dependent effective connectivity between components. 

This is distinct from the association studies where usually only one parameter is specified to 

quantify the non-directional relationship between two components. The functional form (3) 

is not new: it was previously introduced in the context of DCM for fMRI data. However, for 

fMRI data, the model is assumed in conjunction with strong restrictions on the parameter 

space to ensure system stability over a long period of time (hundreds of seconds). In 

contrast, for ECoG data, we do not impose any restrictions, and instead assume Model (3) 

only for short periods of time, say less than 0.5 s. Also, to ensure that the bilinear 

approximation to F1 is effective, we allow the parameters to vary across different periods of 

time. At the observation level, since each ECoG electrode directly measures the electrical 

activity of neurons in a local region with a small random noise, we assume F2 in (2) has the 

form

(4)

where ε(t) = (ε1(t), . . . , εd(t))′ is a d-dimensional vector of measurement errors with mean 

zeroes. The errors εi(t) are assumed to be independently Gaussian distributed with mean 

zero and variance . Though the errors can be autocorrelated, it is not necessary to take 

autocorrelation into consideration given the strong SNR of the ECoG data. The observed 

data y(t) are measured at discrete times , with  equalling one millisecond. 

Because each yi(t) is collected at one recording channel of ECoG, we use component, brain 

region, and channel exchangeably hereafter.

2.3 Potts-based DDM for functionally segregated system

Estimated parameters of Model (3) are often unreliable with very large variance when the 

number of components, d, is large for two reasons. First, though the observed data y(t) have 

a large SNR, the estimated dx̂(t)/dt still has considerable errors. This is a prevalent problem 

in ODE model estimation, which is sensitive to noise. Second, to ensure the bilinear 

approximation effective, we fit the model to very short periods of ECoG time series with 

only a few hundred time points. Notice that the number of model parameters, (J + 1) · d2 + 

(J + 1) · d, is of quadratic order of d, and thus large d leads to a large number of parameters, 

the estimates of which would have large variances given the limited data. This problem can 

be addressed by imposing sparsity assumptions on the parameters, that is, forcing many 
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entries of A and B to be zero. Such sparsity-inducing regularization has been widely used in 

regression problems with a large number of candidate predictors (for a review, see Shao, 

1998; Fan and Lv, 2010). Since given x(t), the parameter estimation for Model (3) is 

equivalent to solving d linear regression models, the sparsity assumption would likewise 

help to increase estimation efficiency of the DDM. More importantly, the sparsity 

assumption has a scientific motivation. Connections among brain regions are energy 

consuming (Földiák and Young, 1995; Olshausen and Field, 2004; Anderson, 2005), and 

biological units tend to minimize energy-consuming activities unless necessary in order to 

survive and prosper (Bullmore and Sporns, 2009; Micheloyannis, 2012). As such, it is 

reasonable to believe that the connections among many brain components should be sparse, 

especially when the human brain is performing a simple function within a short period of 

time. Here, among different possible forms of sparse networks, we focus on the one that is 

decomposable into several functionally segregated sub-networks/modules, a network 

structure known as “modularity”, for two reasons. First, modularity has been widely 

reported in the literature on brain networks (Girvan and Newman, 2002; Milo et al., 2002; 

Newman, 2003; Milo et al., 2004; Newman, 2006). The modules form building blocks for 

large network systems and “the modularity of the brain's architecture” “effectively insulates 

functionally bound subsystems from spreading perturbations due to small fluctuations in 

structure or dynamics” (Sporns, 2011). Second, the modularity/cluster structure provides 

intuitive interpretation of independent functions of brain regions in different modules, and 

supports functional segregation and specialization, an important principle of the brain's 

functional organization (Friston et al., 2004; Sporns, 2013).

To characterize the modularity, we first assign module labels to brain components. Let mi be 

the module label of the ith system component, which can take any integer values from 1 to 

d, and δ(mi1, mi2) be the Kronecker delta, which equals 1 whenever mi1 = mi2 and 0 

otherwise. For each brain component i1 (i1 = 1, · · · , d), we assume the following model, a 

generalization of Model (3):

(5)

Then we assume the Potts model on the module labels mi:

(6)

where  denotes a probability measure, and μ is a positive constant. The above is referred to 

as the Potts-based DDM (PDDM). From (5) it is clear that the larger a module (cluster) is, 

the more parameters are required to characterize the directional effects between its elements, 

and thus the more complex the PDDM is. Indeed, the most complex PDDM is the one with 

all the components grouped into one single module, as Model (3), and the most 

parsimonious PDDM is the one with all components independent from each other, and each 

component forming one module. This is opposite to the standard clustering scenario, where 

the elements in one cluster are assumed identical and fewer and larger clusters imply a more 
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parsimonious model. The Potts model (6) assigns small weights to large modules, and thus 

favors economic systems decomposable to small modules, within which the components are 

all connected, and between which the components are functionally independent.

3 Estimation of the DDM

There are two main approaches in the literature of ODE model estimation: discretization 

methods using numerical approximation (Biegler et al., 1986; Gelman et al., 1996; 

Campbell, 2007) and basis function expansion (Varah, 1982; Deuflhard and Bornemann, 

2000; Ramsay and Silverman, 2005; Poyton et al., 2006; Ramsay et al., 2007). We adopt the 

latter for PDDM estimation for three reasons. First, since each xi(t) is an average of a large 

number of neuron activities in the local region, and temporally-dense observations of xi(t) 

are available, xi(t) is smooth (as shown in Figure 1(b)) and can be well approximately by 

functional bases. Second, the approach using basis expansions provides closed forms of x(t) 

and dx(t)/dt. Third, under the bilinear model (3), given the estimated x̂(t) and dx̂(t)/dt, the 

estimation of model parameters is straightforward, equivalent to solving d linear regressions, 

where dx̂(t)/dt are responses, and x̂(t) and x̂(t) · u(t) are predictors. In summary, the 

estimation of PDDM parameters using functional basis representation has computational 

advantages under the proposed bilinear formulation for the ECoG data. We elaborate the 

details of PDDM estimation below.

3.1 Log-Likelihood based criterion

We first explain the standard procedure based on cubic spline basis expansion for solving 

the DDM (3) and (4) without the Potts term. Let x(t) be represented by a set of cubic spline 

bases:

(7)

where ϕ(t) = (ϕ1(t), . . . , ϕp(t))′ is a vector of basis functions, and Γ is a d by p matrix whose 

ith row, denoted by Γ(i), consists of the basis coefficients of xi(t). We use equally-spaced 

cubic spline bases to represent x(t) since the time series data under study are equally spaced. 

Through simulations we found that choice of the number of spline bases does not affect the 

results much, as long as the number is not too far from the number of observations T .

A simple two-stage procedure proposed by Varah (1982) can be used to estimate DDM: 

First fit Γϕ(t) to the observed data y(t) using nonparametric spline smoothing regularized by 

a roughness penalty, and then estimate parameters θ1 in (1) by fitting dx̂(t)/dt to F1(x̂(t), u(t), 

θ1) if F1 is known. Ramsay and Silverman (2005) and Poyton et al. (2006) replaced the 

roughness penalty on the fitted x ̂(t) with model-fitting errors 

, also referred to as fidelity to differential equations, 

and proposed a log-likelihood based criterion that combines the curve-fitting errors of x(t) 

and fidelity to differential equations. These authors further developed an iterative algorithm

—“iterated refined principal differential analysis (iPDA)”—to minimize this criterion to 

solve the ODEs. They showed that iPDA converges very fast and outperforms the original 

two-stage procedure. For the DDM (3) and (4) under study, the log-likelihood based 

criterion has the following form:
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(8)

where dϕ(t)/dt = (dϕ1(t)/dt, . . . , dϕp(t)/dt)′, and θ contains all the parameters including Γ, A, 

Bj, C and D. The two steps of the iPDA for minimizing H(θ) in (8) are given below:

A. Solve for the minimizer of H(θ) given A, Bj, C, and D;

B. Solve for the ordinary least square (OLS) estimates of A, Bj, C, and D given 

estimated  and  with  obtained from Step A.

Step A fits x(t) to the observed data regularized by the fidelity to the neuronal state 

equations, where the extent of regularization is controlled by the parameter λ. At the start of 

the iPDA, one may first estimate Γ in a fully nonparametric manner with λ = 0. The analytic 

form for the minimizer Γ of H(θ) in Step A, given in the Appendix, is straightforward to 

derive, because H(θ) is quadratic of Γ given the rest parameters.

3.2 Estimation with the Potts penalty

The Potts model (6), a prior distribution on the module labels in the view of the Bayesian 

paradigm, is mathematically equivalent to a penalty in the optimization framework. The 

Potts penalty, defined as the log of the probability of the Potts model, can be naturally 

included in the log-likelihood based criterion (8). Then the curve fitting of x(t), module 

identification, and PDDM parameter estimation can be simultaneously obtained through 

minimizing the following Potts-penalized log-likelihood based criterion:

(9)

where HP (θ) is a modified H(θ) with the second term changed according to (5). We here 

suppose that the penalty parameters λ and μ are given, and defer the associated parameter 

selection to Section 3.3.

We propose an iterative procedure—Potts-based iPDA (P-iPDA)—for minimizing PHP (θ), 

which is modified based on iPDA to accommodate the extra Potts penalty in (9). P-iPDA 

iterates between two major steps: solving for the minimizer Γ of PHP (θ) given A, B, C, and 

D, and given Γ searching for the optimal cluster and estimating associated parameters A, B, 

C, and D that lead to the smallest PHP (θ). The first step is the same as Step A of iPDA. For 

the second step, we use a stepwise procedure to search for the optimal clusters. Specifically, 

let

Zhang et al. Page 9

J Am Stat Assoc. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where θ2 = (A, B1, · · · , BJ, C, D). Let  be the collection of module 

labels of all d system components at step s,  be the 

collection of module labels excluding component i, and  be the set of distinct values in 

. Setting  as the initial values, P-iPDA iterates between the following 

steps.

I.A Identical to Step A of iPDA.

I.B Given the estimated x̂(t) and , repeat the following procedure for each component i.

B.1 Set . Given  and , repeat the following procedure for each 

, where  is any positive integer value not belonging to  but smaller 

than d + 1.

B.1.a Let .

B.1.b For each component l ∈ {1, . . . , d}, based on  from Step B.1.a, identify the 

associated components hl[notdef]1, . . . , hl,nl that fall into the same module as l, that is, 

. Obtain the OLS estimates of Alh, Bj,lh, Cl,j, and Dl by regressing 

 versus x^h(t), uj(t) · x̂h(t) and uj(t) for j = 1, . . . , J and h = hl,1, . . . , hl,nl. Set Alh, 

Bj[notdef]lh for the rest h as zero.

B.1.c. Based on  and estimated Â, B̂
j, Ĉ, and D̂ from Step B.1.b, calculate the associated 

 denoted by .

I.C Let . Let  and 

, update Â, B ̂
j, Ĉ and D̂ given the component labels .

Step B.1 proposes all possible module-label changes for component i given the module 

labels  of the rest components. The extra element  is used to allow component i to 

form an module (containing component i only) independent of the rest components. Then 

sub-steps B.1.a and B.1.b calculate the associated  given the module labels of d 

system components , where z is the proposed 
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module label for component i. Step I.C selects the optimal one with the smallest 

among all one-component label changes.

3.3 Penalty parameter selection

The criterion PHP (θ) depends on two penalty parameters, λ and μ, the former regularizing 

the roughness of the estimated x̂(t) and the latter controlling the size of the modules. 

Existing approaches for penalty parameter selection include ordinary leave-one-out cross-

validation (LOOCV), K-fold cross-validation, generalized cross-validation (GCV, Wahba, 

1990), GCV for functional data (Reiss and Ogden, 2007, 2009), and restricted maximum 

likelihood (Wood, 2011). For the particular multivariate time series and ODE models under 

study, we consider a modified LOOCV: at each round, leave out the observations at one 

time point, say the (v +1)th time point, of the d time series, and then apply the P-iPDA with 

the candidate λ and μ to the rest of the data, and obtain estimates x̂(t) and Â, B̂, Ĉ, D̂. The 

predicted x at the left-out time v + 1 is given by

And we use the sum of prediction errors as the criterion to select λ and μ,

The LOOCV is very time-consuming for two reasons. First, if μ is small, it will result in 

many components falling into the same module and consequently the P-iPDA requires many 

iterations to converge. Second, when many components fall into the same module, 

computation for the coefficients, Γ, of the cubic spline bases representing x(t) in the module 

involves inversion of a large matrix, which is computationally expensive. We propose to 

conduct LOOCV, instead of at every time point, at only a small sub-sample of the data, say 

n equally-spaced time points. We call this procedure sub-sample cross validation (SSCV).

The optimal choice of the size of the sub-sample in SSCV—the number of time points n—is 

an empirical study for subsequent work and our work has the same issues in choosing cross-

validation size as every other method that uses it. A major issue to be considered when 

choosing n is the ensuing computational cost, which depends on the length of time series T , 

the number of system components d, and the number of stimulus types J. The larger n, the 

closer the estimated prediction error to that of LOOCV, and also the more computational 

cost. The choice of n also depends on the volatility of x(t). If x(t) changes slowly, then the 

values of x(t) at close times are similar, and consequently a small value n is needed to 

estimate the prediction error. For our application, we found that the data at every five 

consecutive time points take similar values, so conducting LOOCV on 50 equally-spaced 

time points provides reliable comparison of prediction errors using different combinations of 

λ and μ without incurring prohibitive computational burden.
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Even with SSCV, it is still computationally challenging to explore a large number of 

candidate penalty parameters, so we propose to first select a small number of pairs of λ and 

μ solely based on the curve-fitting error

and the fidelity to ODE models

before proceeding cross validation. For each combination of λ and μ, we apply P-iPDA to 

the entire data, and keep records of SSE(λ, μ) and Fid(λ, μ) from the last step. Then screen 

out the parameters associated with either SSE(λ, μ) or Fid(λ, μ) much larger than the 

smallest values, and those associated with very many, say d, clusters or very few, say only 1, 

cluster. Then among the rest of a few parameters with both small SSE(λ, μ) and Fid(λ, μ), 

we use SSCV to select the pair of penalty parameters for the final data analysis.

4 Application to a Real ECoG Study

4.1 Data acquisition

We now apply the proposed method to analyze the ECoG data collected from a right-handed 

adult female epilepsy patient, who had subdural electrodes implanted for clinical purposes of 

seizure localization and functional mapping prior to surgery for treatment of medically 

intractable seizures. The data were recorded from a 6×8 electrode array implanted over the 

left hemisphere, including the posterior temporal lobe (auditory cortex) of the patient (see 

Figure 1(a)). Electrodes were 2.3 mm in diameter and spaced 9 mm center-to-center. 

Recordings were performed four days after electrode implantation while the patient was 

awake and fully responsive. The patient participated in several research studies and provided 

informed written consent for all research testing in compliance with the Johns Hopkins 

Institutional Review Board.

Event-related ECoG recordings were acquired simultaneously from all electrodes using an 

established 300-trial passive auditory oddball paradigm (Sinai et al., 2009; Cervenka et al., 

2013). Two 50 ms duration single-frequency tones were presented: a frequently repeated 

1000 Hz tone (N=246 trials) and an infrequently and pseudo-randomly presented (no 

consecutive repetitions) 1200 Hz tone (N=54 trials). Tone stimuli were presented binaurally 

at a comfortable listening level through insert earphones at inter-stimulus intervals of 1450 

ms. To reduce attention effects, the patient watched an animated movie with no sound. The 

continuous ECoG signal was amplified (5×1000) and recorded digitally using a referential 

montage, 1000 Hz A/D sampling and a bandwidth of 0.1-300 Hz, as previously described 

(Cervenka et al., 2013). Two electrodes (channels 47 and 48) in the top corner of the array, 
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outside perisylvian cortex, were assigned as the reference and ground electrodes. Stimulus 

onset markers were recorded simultaneously to separate EEG channels.

ECoG recordings from the 46 active electrode channels were reviewed visually to identify 

any with excessive artifact for exclusion from analysis. One channel was identified as noisy 

and excluded (channel 32). The remaining d = 45 channels of ECoG time series data were 

analyzed. For each channel, the ECoG signal was segmented into 300 trials of 250 ms 

duration: 100 ms pre-stimulus (0-100 ms), 50 ms for stimulus presentation (100-150 ms), 

and 100 ms post-stimulus (50-150 ms). We use relatively short segments to maintain an 

efficient bilinear approximation of the nonlinear connectivity relationships among 

components. Since the 1000 Hz tone was presented far more frequently than 1200 Hz, we 

focus on the analysis of 246 trials under 1000 Hz. For each 250-ms trial, let u(t) = 1 for 100 

≤ t ≤ 150. We omit the subscript for matrix B, as only one stimulus is considered in the 

model.

The presence of cortical auditory evoked and spectral power responses was used to identify 

electrode sites responsive to auditory stimulation. Evoked responses were derived by trial 

averaging of the phase-locked signal components in the time domain, where the phase lock 

refers to neuron firing at or near a particular phase angle of the sinusoidal stimulus sound 

wave; event-related changes in spectral power were determined by using time-frequency 

analysis. We focused on the evoked N1 response that occurs around 100 ms post-stimulus 

and is a large, obligatory cortical response to sound stimulation that is prominent in ECoG 

recordings from auditory cortex (Edwards et al., 2005; Sinai et al., 2009). For the spectral 

power analysis, we used a time-frequency matching pursuit algorithm (Mallat and Zhang, 

1993; Franaszczuk and Bergey, 1998; Durka et al., 2001; Boatman-Reich et al., 2010). A 

total of 3 electrode sites were identified as auditory responsive based on the presence of 

measurable auditory evoked N1 responses and increased spectral power (> 30 Hz). The 

three electrode sites were located in the posterior superior temporal gyrus, consistent with 

the location of auditory cortex (Figure 1(a)). Based on clinical intracranial EEG recordings, 

seven electrode channels located in the inferior-anterior portion of the temporal lobe were 

associated with epileptiform activity and identified as the primary seizure focus (Figure 

1(a)).

4.2 Data analysis

Given one trial of data, we first standardized each time series to unit variance, applied P-

iPDA to the standardized data and evaluated SSE(λ, μ) and Fid(λ, μ) for all combinations of 

λ = (0.1, 0.25, 0.5, 1, 2.5, 5, 10, 25, 50, 100, 250, 500, 1000) and λ·μ = (0.0001, 0.001, 0.01, 

0.1, 1, 10, 50, 100), which cover a wide range of values. Based on the outputted SSE(λ, μ) 

and Fid(λ, μ) for each combination, we screened out parameters with either too large SSE(λ, 

μ) or Fid(λ, μ) and those resulting in either too many, say d, clusters or only 1 cluster. Then 

we conducted SSCV on the rest pairs of parameters to select final (λ, λ, · μ). We applied this 

selection procedure to five randomly chosen trials, collected at five different periods of the 

ECoG recording process, ranging from the beginning to the end. We found that the same 

parameters λ = 0.25 and λ · μ = 0.01 were selected. As such, we used the same pair of 

penalty parameters for analyzing data across different trials. We want to stress that though 
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brain activities may vary across trials, this does not necessarily mean that the corresponding 

penalty parameters selected would vary significantly. In fact, the selection of penalty 

parameters does not directly depend on the temporal values of the state functions, but rather 

the SNR of the data and the most significant causal interactions among different 

components, which may be stable across trials. In this application, there are two potential 

reasons for identical penalty parameters being selected by SSCV. First, the parameter λ—

used to control the roughness of the fitted curves—depends most on the SNR of the data. 

Since the SNR of ECoG data is consistently high, smaller values of λ are consistently 

chosen, inducing a weak regularization effect. Second, the Potts penalty parameter μ is used 

to balance the ODE model size and fitting errors, and its value depends on the significance 

of the directional effects between components and/or the strength of the association between 

the instantaneous changes of components’ state functions and the functions themselves. 

Even if the state functional curves vary across trials, the most significant connections 

between components can still be stable. An analogy is a Markov chain with a constant 

transition probability but temporally varying states. Since here we study connectivity within 

a small brain area involved in a basic brain auditory function, it is very likely that the most 

significant interactions among brain components are stable (Flinker et al., 2010). 

Consequently, very similar (or identical) values of penalty parameters are selected.

We applied P-iPDA to each trial independently with (λ = 0.25, λ · μ = 0.01), allowing the 

cluster structure and model parameters to vary across trials. The colored matrix in Figure 

2(a) summarizes the percentage of every pair of channels being clustered together across 

246 clustering results, each obtained with one trial of data. The color scale is arbitrary, with 

dark red indicating high percentage and dark blue indicating low percentage. Based on this 

matrix, we constructed networks of closely-connected regions, and presented them in 

Figures 2(b) and 2(c) with different thresholds for clustering frequencies. Each node 

represents one recording channel and each edge in 2(b) and 2(c) between two channels 

respectively indicates that they were clustered into the same module by P-iPDA in more 

than 90% and between 70% and 90% of trials. We found that channels 33-46 and 17 are 

most closely connected, with clustering percentage higher than 90% (corresponding to the 

darkest red areas in Figure 2(a)). This is possibly because these channels all reside in the 

same brain local area, inferior frontal lobe. Then the connections among them are “local” 

and thus strongest. As shown in Figure 2(c), the auditory responsive regions, especially 

channels 15 and 16, which are located at adjacent sites along the posterior superior temporal 

gyrus and inferior parietal lobe, proximal to auditory cortex, are closely connected to the 

inferior frontal lobe. This result is in keeping with the findings that the inferior frontal lobe 

is involved in auditory processing, specifically phonological and syntactic processing 

(Burton, 2001), and music perception (Steven et al., 2006). In addition, the small clustering 

frequencies between channels 1-6, 9-10 and 18 in the epileptic area and channels 14-16 in 

auditory cortex (the dark blue areas in Figure 2(a)) indicate that there is no or very weak 

interaction between them. This is possibly because the brain sub-network involved in the 

auditory function was unaffected by the activity in brain epileptic areas during the data 

collection.
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Figures 3(a) and 3(b) show the average of Â and B̂ estimated by P-iPDA across all trials. 

Row i (1 ≤ i ≤ d) of matrices B̂ and Â respectively represent interactive effects exerted by 

other channels on channel i with and without tone stimuli, and column i of matrices B̂ and Â 

respectively represent interactive effects exerted by channel i on other channels with and 

without tone stimuli. The columns corresponding to channels 14-16, the auditory-responsive 

regions, had values close to zero in the averaged Â, indicating that no notable effects of the 

three channels were observed over other channels when tone stimulus was not evoked. The 

effect of channel 17 over other channels stood out in Â, revealing that channel 17, located in 

the inferior frontal lobe, strongly affected all three auditory-responsive electrodes in the first 

module. Moreover, estimates of A from each of the 246 trials show that the effect of channel 

17 was stable over time. This suggests that although channel 17 showed no identifiable 

auditory response itself, it may serve to monitor activity in those auditory responsive sites 

located more posteriorly. The top-down monitoring role of the frontal lobe has previously 

been reported by Stuss and Levine (2002).

5 Simulations

5.1 Example 1: two clusters with medium size

We further investigate the operating characteristics of P-iPDA in comparison to iPDA 

through simulations. Example 1 used data generated from a dynamic system of 32 channels. 

To mimic the real data, the stimulus function u(t) is identical to that of the real data, and 

there are two functionally segregated sub-networks, each containing 16 channels. For 

simplicity, we use identical A and B. The parameters are chosen such that x(t) have periodic 

temporal variations, and do not uni-directionally increase or decrease over time, as shown in 

Figure 4. Also, channels in the two modules have different frequencies of temporal 

variation, such that x(t) in two clusters are not linearly dependent. All the channels in each 

module are pairwise connected, that is, none of the elements of A and B within each module 

is zero. The values of A/B are shown in Figure 4(c). We conducted 100 independent 

simulations. Given the parameters θ2, 32 time series x(t) are generated by discretizing the 

PDDM (5) using numerical approximation. Since the underlying system is deterministic, x(t) 

is identical across 100 simulations. Within each simulation, 32 independent error time series 

ε(t), each following an AR(1) model with a lag-one correlation of 0.5, are generated. We 

adjusted the variance of each εi(t) such that the SNR—defined as var(xi(t))/var(εi(t))—

equals 10. We set SNR at 10, because the estimated SNR of the real data, 

, is above 10 across all trials and channels. Then for each i, the sum 

of xi(t) and εi(t) yields yi(t).

We first selected the penalty parameters based on one simulation through the same 

procedure as in the real data analysis, and used the selected λ and μ for analyzing 100 

simulations. Figure 5(a) summarizes the percentage of each pair of channels clustered into 

the same module by P-iPDA, and Figures 5(b) and 5(c) respectively present the 

corresponding networks using different thresholds for frequencies: higher than 90% and 

between 70% and 90%. The true positive rate of P-iPDA (the frequency of correctly 

detecting nonzero values of A and B) is 81.5%, and false positive rate (the frequency of 

estimating zero values of A and B incorrectly nonzero) is 0. Overall, P-iPDA successfully 
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detected two clusters, though it occasionally missed clustering one or two channels, which is 

possibly due to the multicolinearity among x(t) in the same cluster.

We evaluated and compared the biases and variances of Â and B̂ estimated by P-iPDA and 

iPDA, which are summarized in Table 1. For easy comparison, we used the same λ in the 

two methods. In Example 1, P-iPDA produced estimates with slightly smaller biases and 

much smaller variances than those by iPDA. The reasons are two fold. First, if x(t) is known 

and P-iPDA correctly identifies all interactive channels, the regression models outputted 

from P-iPDA, where dxi(t)/dt of each channel i is the response, and x(t) in the same cluster 

as i are the predictors, are equivalent to those in iPDA. In addition, since estimated x̂(t) by 

P-iPDA and iPDA based on identical λ take similar values, the estimates of the above 

mentioned regression coefficients, i.e., A and B, by the two methods have similar means and 

biases. Second, with the sparsity constraint, P-iPDA uses much fewer predictors in the 

regression models than iPDA, and thus the ensuing estimates have much smaller variances. 

Other than achieving better estimation efficiency than iPDA, P-iPDA, by partitioning a large 

network into several independent smaller ones, also takes much less computational time.

5.2 Example 2: multiple small clusters

The simulated dynamic system has 20 dimensions with 4 clusters of size 6, 6, 4, and 4. 

Figure 6(c) shows the values of A = B used to generate 20 curves x(t), and Figures 6(a) and 

6(b) show several x(t) from each cluster. Errors ε(t) are generated in the same manner as 

those in Example 1 with SNRs of 10. Then for each i, the sum of xi(t) and εi(t) yields yi(t).

The parameter selection of λ and μ, and the analysis of data from 100 simulations follow the 

same procedure as in Example 1. Figure 7(a) summarizes the frequencies of each pair of 

components being clustered together by P-iPDA across 100 simulations and Figure 7(b) 

with 7(c) presents the associated networks constructed by using different thresholds for the 

clustering frequencies. Overall, the true positive rate of the P-iPDA in Example 2 is 97.5% 

and the false positive rate is 10.9%.

Comparing estimated Â and B̂ outputted from P-iPDA and iPDA, the former again achieved 

slightly smaller biases and much smaller variances than the latter, as shown in Table 1. We 

note that since Example 2 has a higher percentage of zero values in matrices A and B than 

that in Example 1, the reduction of estimation variability by P-iPDA, in comparison to 

iPDA, is more pronounced.

5.3 Example 3: ECoG of different lengths

We have also investigated how the clustering results by P-iPDA vary with different lengths 

of time series. Using the same A, B, C, D in Example 2, two additional sets of x(t) were 

generated, one with T = 100 and another with T = 500. We let u(t) = 1 for 25 ≤ t ≤ 75 in the 

former, and u(t) = 1 for 100 ≤ t ≤ 150 and 400 ≤ t ≤ 450 in the latter. For each set of x(t), we 

conducted 100 simulations in the same manner as in Example 1, summarized the clustering 

frequencies by P-iPDA for each of two sets of x(t) respectively in Figures 8(a) and 8(d), and 

presented networks constructed using different thresholds for clustering frequencies in 

Figures 8(b), 8(c), 8(e), and 8(f). When the length of time series is reduced by half, the true 
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positive rate of P-iPDA is decreased to 91.8% and false positive rate is increased to 20.8%. 

On the other hand, when the length is doubled, the true positive rate is increased to 99.7% 

and the false positive rate is significantly reduced to 2.4%. Overall, the length of the data 

affects the false positive rate more than the true positive rate. This is possibly due to the fact 

that the model-fitting errors are more affected by missing truly interactive channels, but less 

affected by including non-interactive channels, and thus P-iPDA tends to cluster more 

channels together when the data information is limited.

In summary, P-iPDA achieved a higher true positive rate in Examples 2 and 3 than that in 

Example 1. In general, P-iPDA is most effective for cluster structures consisting of small 

clusters: the smaller the clusters, the fewer iterations that P-iPDA takes to identify the 

clusters, and less computation needed for estimating the spline-basis coefficients and model 

parameters.

6 Discussion

We propose a differential-equation-based dynamic model for ECoG data to study directional 

effects between brain regions, and introduce a new Potts model for the state equations in the 

DDM to identify functionally segregated brain networks. The high spatial and temporal 

resolution of the ECoG data allows the dynamic model to have a simple structure that can 

accommodate a large number of brain components, unlike related DCMs in other modalities. 

We represent the neuronal states of brain components by cubic spline bases and estimate the 

model by minimizing a log-likelihood-based criterion, for which we have developed an 

iterative optimizing algorithm. The Potts model is converted to the new Potts penalty in the 

penalized likelihood approach.

Penalty parameter selection is a data-dependent process. As the ECoG recordings analyzed 

in this article cover only a small brain area under one experimental paradigm with a simple 

auditory stimulus, brain auditory responses measured by ECoG tend to be stable across trials 

(Flinker et al., 2010), and consequently very similar penalty parameters were selected. 

However, in more common modalities such as fMRI and EEG, significant heterogeneity—

due to the longer length or larger brain area covered—in the underlying effective 

connectivity across trials is widely reported (e.g. Duann et al., 2002; Truccolo et al., 2002; 

Turetsky et al., 1988). In such cases, penalty parameter selection should be conducted 

separately for each trial, which will likely lead to different values being selected for different 

trials. Since parameter screening and cross validation are performed independently for each 

combination of parameter and each data point, this process can be parallelized, for example, 

using GPU computing to reduce the computational cost.

While the proposed method is motivated from and applied to the ECoG data, the statistical 

methodology, particularly the PDDM, can be applied to a broad range of applications using 

multivariate time series. First, the Potts penalty, in fact, does not rely on the linearity of the 

ODE model assumed in this analysis, and can be used in any dynamic models. Second, the 

Potts penalty is also applicable to settings where the observation time T is smaller than (J + 

1) · d2, the number of parameters characterizing pairwise interactions between components, 

analogous to the “small n large p” paradigm. Indeed, when the number of parameters in each 
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module is believed to be much smaller than T , one can start with the most economic PDDM 

in which each component forms an independent module, and thus requires the least number 

of parameters. Through similar optimizing procedures as that in Section 3.2, at each step one 

node is selected to be clustered with one existing module according to the ensuing criterion. 

Then the size of modules will increase and the ensuing number of modules will decrease 

until the criterion cannot be optimized anymore. Such a procedure is comparable to a 

stepwise linear regression that adds one variable at a time, and can be used in the “small n 

large p” paradigm as long as the number of selected variables is much smaller than n. Third, 

the Potts penalty can be used for time series that are observed in segments. Even when the 

parameters are allowed to differ between segments, the penalty can still be used to identify 

modules as long as they are assumed to remain the same over the time.

We fit our PDDM to the ECoG time series observed over a very short (less than 1s) period 

of time, different from the common practice of fitting DCMs to long time series (often in 

hundreds of seconds) in fMRI. Thanks to its high temporal resolution, such ECoG time 

series, with a large number of total observations still, offers a unique opportunity for 

studying effective connectivity, for the following reasons. First, a brain system may change 

dramatically over a short period of time, inducing non-ignorable temporal changes in 

parameter values, or even modules. Second, even if there is no dramatic change in the brain 

system over a long period of time, the underlying brain activity is likely to deviate 

significantly from the assumed linear system. As such, model assumptions based on first or 

second order Taylor approximation are relevant in the context of dynamic systems evolving 

over a short time. Third, analyzing short time series allows us to avoid making strong 

assumptions on the parameters of the PDDM, such as a negative definite parameter matrix—

commonly assumed in fMRI-based connectivity studies—in order to ensure a stable system 

over an extended period. Nevertheless, it is still feasible to investigate brain effective 

connectivity using data measured over a long time. One possible approach is to first divide 

the data into several much shorter periods, within each of which a separate linear model is 

assumed. Then, identify functionally independent modules using the PDDM. Finally, within 

each identified module, apply nonparametric regression methods to approximate the 

nonlinear and unknown relationship between instantaneous changes of neuronal states with 

themselves and the experimental input.

The PDDM specifies two separate parameters for the connection in each of two directions 

between any two components within the same cluster, and the associated estimation 

algorithm P-iPDA clusters two components together if the connection in any one direction is 

strong. It is possible that the connection between some components within the same cluster 

is void in one direction, but strong in the other direction. Our current method, however, does 

not evaluate the statistical significance of the directional effects and thus cannot distinguish 

which underlying directional effect within a cluster is void or nonzero. One potential 

approach to address this issue is to conduct hypothesis testing on the estimates of the 

directional effects from P-iPDA. This procedure must take into account of the uncertainty in 

identifying the clusters by P-iPDA, which is non-trivial in practice. Another potential 

approach is to impose both Potts penalty and L1 penalty (Tibshirani, 1996) on the 

parameters within clusters in the log-likelihood criterion. Though achieving simultaneous 
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clustering and sparsity within clusters, this approach is computationally demanding with 

three penalty parameters to be selected, and thus may require more iterations to converge. 

These will be the focus of our future directions in high-dimensional ODE model estimation.

There are several other directions for improving the PDDM and the P-iPDA algorithm. First, 

the spatial information of brain regions can be incorporated into the Potts model, so that 

spatially-close regions are more favored to be clustered into one module. Second, our 

current practice of using identical penalty parameters for all the regions may not be suitable 

for brain networks comprising modules with distinct interactive patterns. One potential 

solution is to use adjustable and region-dependent penalty parameters. Another possibility is 

to modify P-iPDA such that the already-identified clusters can be removed from the 

optimizing function, and thus do not affect the estimation of other clusters. Third, the 

PDDM estimation is formulated as an optimization problem in the article; statistical 

inference such as confidence interval construction and hypothesis testing on the model 

parameters is not straightforward. As elucidated before, the Potts model defines a prior 

distribution for the DDM parameters, and thus inference of the PDDM can be naturally 

carried out within a Bayesian framework. Finally, the PDDM can be modified to allow for 

very few channels that have interactive activity with several clusters and act as the “hub” of 

the brain network.
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Appendix

Computation of Step A, I.A., & II.A

First, let Y = (y1(1), . . . , y1(T ), y2(1), . . . , yd(T ))′, Φ = (ϕ(1), . . ., ϕ(T))′, a Td-by-pd matrix 

, and γ = (Γ(1), . . ., Γ(d))′. Then

(10)

Under the spline representation,
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(11)

Define vectors with dp elements: Λi(t) = (Ai1ϕ1(t), . . . , Ai1ϕp(t), Ai2ϕ1(t), . . . , Aidϕp(t)), 

Υij(t) = (uj(t)·Bj[notdef]i1·ϕ1(t), uj(t)·Bj,i1·ϕ2(t), . . . , uj(t)·Bj,i1·ϕp(t), uj(t)·Bj,i2·ϕ1(t), . . . , uj(t)· 

Bj,id · ϕp(t)), and  where 0p is a zero vector with p 

elements, and the (i − 1) · p + 1th to i · pth elements of Ei(t) are non zero. Then (11) can be 

rewritten as . 

. Then we have

In the above  is a dp-by-dp matrix, and  is also a dp-by−dp 

matrix with integral taken at very element of , and 

is defined in the same way. Let  and 

. Then we have

Then given A, Bj, j = 1, . . . , J, C, and D, the minimizer  of H(θ) is given by
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Figure 1. 
(a) 2D schematic of left hemisphere with 8 × 6 electrode array superimposed. Electrode 

locations are estimated from intra-operative photographs and post-implantation CT scans. 

Filled electrodes (nodes 14, 15, and 16) represent sites where auditory responses were 

elicited. Electrodes 1-4, 9-10, and 18 corresponding to circles with vertical lines inside are 

epileptic areas. (b) Plot of a short segment of ECoG time series collected at Channel 1, 15, 

and 33, respectively.
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Figure 2. 
(a) Clustering matrix for all channel pairs by 1000 Hz tone stimulus. Each element in the 

symmetric matrix is the percentage of two regions clustered together by P-iPDA across 246 

1000 Hz trials. (b-c) Networks constructed based on the clustering matrix (a). Each node 

represents one recording channel, the red ones are epileptic areas, and the black are auditory 

responsive areas. Each edge between two channels in (b) and (c) respectively indicates that 

they are clustered into the same module by P-iPDA in more than 90%, and between 70% 

and 90% of trials.
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Figure 3. 
The averaged estimates of A and B across 246 trials by P-iPDA in the real data analysis.
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Figure 4. 
(a) and (b) show temporal changes of the simulated state function x(t) of several channels in 

the first and second modules from Example 1. (c) displays the values of A/B in Example 1.
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Figure 5. 
The (i, j)th (same as the (j, i)th) element of the 32×32 symmetric matrix in (a) represents the 

percentage of channels i and j in Example 1 clustered into the same module by P-iPDA 

among 100 simulations. Figures (b) and (c) are networks constructed based on the clustering 

matrix (a) with different thresholds: Each node represents one recording channel and each 

edge in (b) and (c) respectively indicates that the effect, exerted by one region on another, is 

estimated non-zero by P-iPDA in more than 90% and between 70% and 90% of the 100 

simulations.
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Figure 6. 
(a) and (b) show temporal changes of the simulated state functions x(t) of several channels in 

Example 2. (c) displays the values of A/B used to generate x(t) in Example 2.
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Figure 7. 
The (i, j)th (same as the (j, i)th) element of the 20×20 symmetric matrix in (a) repre sents the 

percentage of channels i and j in Example 2 clustered into the same module by P-iPDA 

among 100 simulations. Figures (b) and (c) are networks constructed based on the clustering 

matrix (a) with different thresholds: Each node represents one recording channel and each 

edge in (b) and (c) respectively indicates that the effect, exerted by one region on another, is 

estimated non-zero by P-iPDA in more than 90% and between 70% and 90% of the 100 

simulations.
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Figure 8. 
The simulated data use the same model parameters as Figure 7 of different lengths. The 

upper panels are based on the data with T = 100, and the lower use T = 500. The (i, j)th 

(same as the (j, i)th) element of the 20×20 symmetric matrix in (a)/(d) represents the 

percentage of channels i and j clustered into the same module by P-iPDA among 100 

simulations. Figures (b)/(e) and (c)/(f) are networks constructed based on the clustering 

matrix (a)/(d) with different thresholds: Each node represents one recording channel and 

each edge in (b)/(e) and (c)/(f) respectively indicates that the effect, exerted by one region 

on another, is estimated non-zero by P-iPDA in more than 90% and between 70% and 90% 

of the 100 simulations.
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Table 1

The summaries of the biases and standard deviations of estimated A and B by P-iPDA and iPDA in two 

simulation examples.

Simulation Examples Parameters Average Bias Average Standard Deviation

P-iPDA iPDA P-iPDA iPDA

1 Matrix A 0.08 0.10 0.26 0.36

Matrix B 0.14 0.15 1.18 1.02

2 Matrix A 2.00 2.03 0.20 0.61

Matrix B 2.03 2.33 0.44 4.71
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