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Abstract

We study the sparse tensor-variate Gaus-
sian graphical model (STGGM), where each
way of the tensor follows a multivariate nor-
mal distribution whose precision matrix has
sparse structures. In order to estimate the
precision matrices, we propose a sparsity
constrained maximum likelihood estimator.
However, due to the complex structure of the
tensor-variate GGMs, the likelihood based
estimator is non-convex, which poses great
challenges for both computation and theo-
retical analysis. In order to address these
challenges, we propose an e�cient alternat-
ing gradient descent algorithm to solve this
estimator, and prove that, under certain con-
ditions on the initial estimator, our algorithm
is guaranteed to linearly converge to the un-
known precision matrices up to the optimal
statistical error. Experiments on both syn-
thetic data and real world brain imaging data
corroborate our theory.

1 INTRODUCTION

High-dimensional tensor data are ubiquitous in many
research fields such as computer vision (Vasilescu and
Terzopoulos, 2002), recommendation systems (Xiong
et al., 2010) and neuroscience (Rendle and Schmidt-
Thieme, 2010; Allen, 2012; Zhou et al., 2013), to
name a few. For example, functional magnetic res-
onance imaging (fMRI) data are naturally represented
by three-way tensors. Traditional statistical and com-
putational methods are insu�cient to analyze these
tensor-valued data due to their ultrahigh dimension-
ality as well as complex structures. This motivates
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tensor-based statistical and machine learning methods
(Vasilescu and Terzopoulos, 2002; Kolda and Bader,
2009; Xiong et al., 2010; Rendle and Schmidt-Thieme,
2010; Allen, 2012; Zhou et al., 2013; He et al., 2014),
which are able to harness the power of tensor repre-
sentation. In our study, we consider the estimation of
conditional independence structure within tensor data.
For example, in fMRI data analysis, one aims to esti-
mate the functional connectivity in terms of depen-
dency structure across di↵erent regions or even voxels
of the brain. One straightforward way is to vectorize
the tensor data and estimate a single precision matrix
(i.e., inverse covariance matrix) of the Gaussian graph-
ical model (Friedman et al., 2008; Ravikumar et al.,
2011; Rothman et al., 2008; Wang et al., 2016a) us-
ing the vectorized data. However, such an approach
ignores the tensor structure and requires estimating
a huge precision matrix, which is computationally ex-
pensive or even intractable.

To address the above problem, the tensor-variate
Gaussian graphical model (TGGM) has been proposed
by He et al. (2014) to encode the structure of ten-
sor data. In particular, a K-th order (a.k.a., K-way)
tensor T 2 Rm1⇥m2⇥···⇥mK follows the tensor normal
distribution with zero mean and covariance matrices
⌃

⇤
1

, . . . ,⌃⇤
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, . . . ,⌃⇤
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where |⌃⇤
k| is the determinant of ⌃⇤
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QK
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)�
1
2 , . . . , (⌃⇤

K)�
1
2 }. An impor-

tant property of the tensor-variate Gaussian graphi-
cal model is that the covariance matrix of the tensor
normal distribution is separable in the sense that it is
the Kronecker product of small covariance matrices,
each of which corresponds to one way of the tensor.
This substantially reduces the degree of freedom of
the model and makes the model estimation computa-
tionally more tractable. More importantly, it enables
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model estimation with even one tensor sample (Sun
et al., 2015).

In this paper, we aim to estimate the unknown pre-
cision matrices ⌦

⇤
k = (⌃⇤

k)
�1 for k = 1, . . . ,K given

n observations T
1

, . . . , Tn, which are sampled identi-
cally and independently from the tensor normal dis-
tribution in (1.1). Following He et al. (2014); Sun
et al. (2015), we assume the precision matrices are
sparse, i.e., the number of nonzero entries in ⌦

⇤
k sat-

isfies k⌦⇤
kk0,0 = s⇤k, for k = 1, . . . ,K. The sparse

precision matrix of each way measures the conditional
independence among the unfolded tensor data for that
way. The resulting model is referred to as a Sparse
Tensor-variate Gaussian Graphical Model (STGGM)
(He et al., 2014; Sun et al., 2015). We propose a spar-
sity constrained maximum log-likelihood based esti-
mator for the sparse precision matrices. Since the
corresponding negative log-likelihood function is not
jointly convex with respect to the precision matrices,
and the sparsity constraints are nonconvex, it is both
computationally and theoretically challenging to solve
the above estimation problem. To address these chal-
lenges, we propose an e�cient alternating gradient de-
scent algorithm to solve it. In particular, our algo-
rithm alternatively minimizes the non-convex objec-
tive function with respect to each individual precision
matrix while fixing the others, under a sparsity con-
straint on that precision matrix.

We prove that, when the initial solutions are su�-
ciently close to the unknown precision matrices, our
algorithm is guaranteed to linearly converge to the un-
known precision matrices up to optimal statistical er-
ror. In particular, the estimator from our algorithm
for the sparse precision matrix of k-th way attains
OP (

p

mks⇤k logmk/(nm)) statistical convergence rate
in terms of Frobenius norm, where s⇤k is the sparsity
of ⌦

⇤
k. It is minimax optimal since this is the best

rate one can obtain even when the rest K � 1 preci-
sion matrices are known (Cai et al., 2016; Sun et al.,
2015). Thorough experiments on both synthetic and
real-world neuroimaging datasets validate the supe-
riority of our algorithm over the state-the-art algo-
rithms.

The remainder of this paper is organized as follows:
In Section 2, we briefly review existing works that are
relevant to our study. We present the algorithm in Sec-
tion 3, and the main theory in Section 4. In Section 5,
we compare the proposed algorithm with existing al-
gorithms on both synthetic data and real-world brain
imaging data. Finally, we conclude this paper in Sec-
tion 6.

Notation We denote the index set {1, . . . ,K} by [K].
For a pair of matrices A,B with commensurate di-

mensions, we let hA,Bi = tr(A>
B) denote the in-

ner product between A and B, and let A⌦B denote
the Kronecker product between them. For a matrix
A 2 Rm⇥m, we denote by vec(A) the vectorization
of A, which converts A into a column vector. For
a square matrix A, we denote by A

�1 the inverse of
A, and denote by |A| its determinant. We use the
notation k · k for various types of matrix norms, in-
cluding the induced norm kAkp = supkxkp=1

kAxkp
for 0 < p < 1, and the Frobenius norm kAkF =
q

Pm
i,j=1

A2

ij . Also we have kAk
0,0 =

P

i,j 1(Aij 6= 0),

kAk1,1 = max
1i,jm |Aij |, kAk

1,1 =
Pm

i,j=1

|Aij |,
where 1(·) is the indicator function. For a symmetric
matrix A, we use A � 0 to denote that A is positive
definite.

2 RELATED WORK

In this section, we briefly review the existing work that
are relevant to ours.

When K = 1, the sparse tensor-variate Gaussian
graphical model reduces to the sparse GGM (Fried-
man et al., 2008; Ravikumar et al., 2011; Rothman
et al., 2008), which has been widely studied in the lit-
erature. When K = 2, the model STGGM reduces
to the sparse matrix-variate Gaussian graphical model
(MGGM), which has been studied by Leng and Tang
(2012); Yin and Li (2012); Tsiligkaridis et al. (2013);
Ning and Liu (2013); Zhou et al. (2014); Chen and
Liu (2015). Existing studies (Leng and Tang, 2012;
Yin and Li, 2012; Kalaitzis et al., 2013; Tsiligkaridis
et al., 2013; Ning and Liu, 2013) have been devoted to
developing various penalized maximum likelihood ap-
proaches for estimating the sparse precision matrices
in MGGM. Nevertheless, all these results are stated
in the sense that there exists a local minimizer that
enjoys certain good statistical properties. Moreover,
most statistical results require the sample size n goes
to infinity at a certain rate, which is in fact not nec-
essary. The only exceptions are Zhou et al. (2014);
Chen and Liu (2015). However, neither of them have
any theoretical guarantee for their optimization algo-
rithms.

For the sparse tensor-variate graphical model, He et al.
(2014) showed the existence of a local optimum with
desired statistical convergence rates, but did not pro-
vide a practical algorithm that is able to achieve such a
good local optimum. The most related work to ours is
Sun et al. (2015), which proposed an alternating mini-
mization algorithm, and proved the optimal statistical
rate of convergence for the estimators returned by the
algorithm. However, their algorithm is based on exact
minimization in each iteration, which is not e�cient
enough. Furthermore, they assume that the true pre-
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cision matrices satisfy k⌦⇤
kkF = 1 for all k = 1, . . . ,K,

which can not be achieved at the same time by nor-
malizing the data for K � 2 in practice. In sharp
contrast, our proposed algorithm achieves the same
statistical rate under much milder conditions, as will
be discussed later in Section 4.

Another line of related work to ours is nonconvex op-
timization, which has been widely used in practice
due to its superior empirical performance. Very re-
cently, alternating optimization has been analyzed for
low-rank matrix estimation (Jain et al., 2013; Hardt,
2014; Zhao et al., 2015; Zheng and La↵erty, 2015; Chen
and Wainwright, 2015; Bhojanapalli et al., 2015; Gu
et al., 2016; Park et al., 2016; Wang et al., 2016b,
2017), sparse coding (Arora et al., 2015), phase re-
trieval (Netrapalli et al., 2013; Candes et al., 2015),
expectation maximization (EM) algorithm (Balakrish-
nan et al., 2014; Zhao et al., 2015), to mention a few.
However, none of these algorithms and theories can
be directly extended to precision matrix estimation in
sparse tensor Gaussian graphical models when K � 2,
due to the complex structure of STGGM.

3 THE PROPOSED ESTIMATOR
AND ALGORITHM

3.1 Tensor Algebra

Throughout our analysis, we follow the tensor nota-
tions in Kolda and Bader (2009). We denote higher
order tensors by T . Note that a K-th order ten-
sor T 2 Rm1⇥...⇥mK reduces to a vector when K =
1, and reduces to a matrix when K = 2. The
(i

1

, . . . , iK)-th element of T is denoted as Ti1,...,iK .
The vectorization of T is denoted by vec(T ) :=
(T

1,1,...,1, . . . , Tm1,1,...,1, . . . , Tm1,m2,...,mK )> 2 Rm with

m =
QK

k=1

mk. Fibers are the higher-order analogue
of matrix rows and columns. A fiber of the tensor data
is obtained by fixing every index but one, and thus the
mode-k fiber of T is denoted as Ti1,...,ik�1,:,ik+1,...,iK .
Matricization refers to the operation that reorders the
elements of a K-way array into a matrix, which is
sometimes called as unfolding or flattening. The mode-
k matricization of T is denoted by T

(k), resulting a
matrix whose columns are the mode-k fibers. We also
introduce the tensor multiplication here, the k-mode
(matrix) product of a tensor T 2 Rm1⇥...⇥mK with a
matrix A 2 RJ⇥mk is denoted by T ⇥k A, which is of
size m

1

⇥ . . .mk�1

⇥ J ⇥mk+1

⇥ . . .⇥mK . We have
⇥

T ⇥kA
⇤

(k)
= AT

(k). In addition, for a list of matrices

{A
1

, . . . ,AK} with Ak 2 Rmk⇥mk , k = 1, . . . ,K, we
define T ⇥ {A

1

, . . . ,AK} := T ⇥
1

A

1

⇥
2

. . .⇥K AK .

3.2 Estimator

Given i.i.d. tensor samples T
1

, . . . , Tn from the ten-
sor normal distribution TN(0;⌃⇤

1

, . . . ,⌃⇤
K), our goal

is to estimate the unknown sparse precision matrices
(⌦⇤

1

, . . . ,⌦⇤
K) which satisfy k⌦⇤

kk0,0 = s⇤k for k 2 [K].
We employ the maximum likelihood principle to es-
timate ⌦

⇤
k for k 2 [K], which minimizes the nega-

tive log-likelihood of (1.1) over n samples. Accord-
ing to He et al. (2014); Kolda and Bader (2009), it
can be shown that T ⇠ TN(0;⌃⇤

1

, . . . ,⌃⇤
K) if and

only if vec(T ) ⇠ N (vec(0),⌃⇤
K ⌦ · · · ⌦ ⌃

⇤
1

), where
vec(0) 2 Rm and ⌦ is the matrix Kronecker product.
Therefore, the negative log-likelihood is equivalent to
the following sample loss function up to a constant

qn(⌦1

, . . . ,⌦K) =
1

m
tr
⇥

b

⌃

�

⌦K ⌦ · · ·⌦⌦

1

�⇤

�
K
X

k=1

1

mk
log |⌦k|,

(3.1)

where b

⌃ = 1/n
Pn

i=1

vec(Ti)vec(Ti)>, and |⌦k| is the
determinant of ⌦k. We propose an estimator based on
sparsity constrained maximum likelihood estimation
as follows

min
⌦1,...,⌦K�0

qn(⌦1

, . . . ,⌦K)

subject to k⌦kk0,0  sk, k = 1, . . . ,K,
(3.2)

where ⌦k � 0 means that ⌦k is positive definite and
sk is a tuning parameter that controls the sparsity of
⌦k. As will be seen in our theory, sk needs to be larger
than the unknown sparsity s⇤k in order to achieve a
statistically good estimator. In practice, sk can be
chosen by cross-validation, or a held-out set.

3.3 Algorithm

The loss function in (3.2) is not jointly convex with re-
spect to (⌦

1

, . . . ,⌦K). However, it is convex with re-
spect to ⌦k while fixing the rest K � 1 matrices. This
is referred to as the biconvex property in optimiza-
tion. According to this property, we propose to solve
the non-convex problem by alternatively updating one
precision matrix with other matrices fixed. The de-
tailed algorithm is displayed in Algorithm 1.

We require the initial points b

⌦

(0)

k in Algorithm 1 lie
in the small neighborhood of ⌦

⇤
k, which is defined

as the Frobenius norm ball for each ⌦

⇤
k as follows:

BF (⌦⇤
k, r) = {⌦ 2 Rmk⇥mk : k⌦ � ⌦

⇤
kkF  r},

k = 1, . . . ,K. In practice, these initial points can be
obtained by heuristic random initialization, or by the
precision matrix estimator of each mode from exist-
ing graphical Lasso method (Friedman et al., 2008;
Rothman et al., 2008; Ravikumar et al., 2011) on the
unfolded data.



E�cient Algorithm for Sparse Tensor-variate Gaussian Graphical Models via Gradient Descent

Algorithm 1 Alternating Gradient Descent (AltGD)
for STGGM
1: Input: Function qn(⌦

[K]

), max number of iter-

ations T , initial points b

⌦

(0)

k 2 BF (⌦⇤
k, r), t = 0,

sparsity sk > 0, tensor samples T
1

, . . . , Tn.
2: for t = 1 to T do

3: for k = 1 to K do

4:

b

⌦

(t+0.5)
k = b

⌦

(t)
k � ⌘krkqn

�

b

⌦

(t)
k , b⌦

(t)
[K]�k

�

;

5:

b

⌦

(t+1)

k = trunc
⇣

b

⌦

(t+0.5)
k ,S(t+0.5)

k

⌘

, where

S(t+0.5)
k is the support set of the largest sk

magnitudes of b

⌦

(t+0.5)
k ;

6: end for

7: end for

8: output:

b

⌦

(T )

1

, . . . , b⌦
(T )

K .

There are two layers of loops in Algorithm 1. The
outer loop is the iteration of gradient descent, while
the inner loop is the operation over each mode of tensor
data. In the inner loop, we estimate ⌦k sequentially,
while fixing all the other precision matrices, by solving
the following sparsity constrained optimization

min
⌦k�0

qn(⌦k,⌦
[K]�k) subject to k⌦kk0,0  sk,

(3.3)

where [K]�k denotes the set of index {1, . . . , k�1, k+
1, . . . ,K}. Instead of solving (3.3) using exact op-
timization, we propose to perform one-step gradient
descent for ⌦k, which corresponds to Line 4 of Algo-
rithm 1, whererkqn(⌦k,⌦

[K]�k) denotes the gradient
of qn(⌦

[K]

) with respect to ⌦k, while fixing the other
K � 1 precision matrices.

Since we require⌦k to be sparse, i.e., k⌦kk0,0  sk, we
apply a truncation step right after the gradient descent
step for ⌦k, in Line 5 of Algorithm 1. The truncation
step is defined as follows: for a matrix ⌦ 2 Rm⇥m and
a tuple set S ✓ {(i, j) : i, j = 1, . . . ,m}, trunc(⌦,S)
gives a m⇥m matrix, whose entries are calculated as
follows

[trunc(⌦,S)]ij =
(

⌦ij if (i, j) 2 S
0 if (i, j) /2 S.

(3.4)

4 MAIN THEORY

In this section, we present our main theory which char-
acterizes the convergence rate of our proposed algo-
rithm and the statistical rate of the estimator.

In order to simplify our analysis, we revise Algorithm
1 into the re-sampling version by employing sample
splitting technique (Hansen, 2000; Balakrishnan et al.,

Algorithm 2 AltGD with Sample Splitting

1: Input: Function qn(⌦
[K]

), max number of iter-

ations T , initial points b

⌦

(0)

k 2 BF (⌦⇤
k, r), t = 0,

sparsity sk > 0, tensor samples T
1

, . . . , Tn which
are split into T subsets of size bn/T c.

2: for t = 1 to T do

3: for k = 1 to K do

4:

b

⌦

(t+0.5)
k = b

⌦

(t)
k � ⌘krkqn/T

�

b

⌦

(t)
k , b⌦

(t)
[K]�k

�

,
which is calculated on the t-th data subset;

5:

b

⌦

(t+1)

k = trunc
⇣

b

⌦

(t+0.5)
k ,S(t+0.5)

k

⌘

, where

S(t+0.5)
k is the support set of the largest sk

magnitudes of b

⌦

(t+0.5)
k ;

6: end for

7: end for

8: output:

b

⌦

(T )

1

, . . . , b⌦
(T )

K .

2014; Wang et al., 2014), which is stated in Algorithm
2. Given n samples and maximum number of iterations
T , the key idea is to split the whole dataset into T
pieces and use a fresh piece of data of size bn/T c in
each iteration. In the rest of this section, we are going
to analyze Algorithm 2.

We first lay out an assumption that is required
throughout our analysis.

Assumption 4.1. For any k = 1, . . . ,K, there is a
constant ⌫ > 0 such that

0 <
1

⌫
 �

min

(⌃⇤
k)  �

max

(⌃⇤
k)  ⌫ < 1,

where �
min

(⌃⇤
k) and �

max

(⌃⇤
k) are the minimal and

maximal eigenvalues of ⌃⇤
k respectively.

Assumption 4.1 requires the uniform bound on the
eigenvalues of true covariance matrices ⌃

⇤
k. This as-

sumption is commonly imposed in the literature for
the analysis of graphical models (Ravikumar et al.,
2011; He et al., 2014; Sun et al., 2015). Note that
since ⌦

⇤
k = (⌃⇤

k)
�1, by the property of eigenval-

ues for inverse matrix, we immediately obtain 1/⌫ 
�
min

(⌦⇤
k)  �

max

(⌦⇤
k)  ⌫.

Now we are ready to present our main theory.

Theorem 4.2. Suppose Assumption 4.1 holds. De-
fine R

min

= mink k⌦⇤
kkF and R

max

= maxk k⌦⇤
kkF .

Let r = min{1/(2⌫), R
min

/2,
p
m/(3Kmk⌫

K+2) �
2R

max

} and suppose that the initial points satisfy
b

⌦

(0)

k 2 BF (⌦⇤
k, r) for all k = 1, . . . ,K. In Algorithm 2,

let ⌘k = 8mk⌫
2/(16⌫4 + 1) be the step size and T > 0

be the maximum number of iterations. Suppose the
truncation parameter sk satisfies

max

⇢

36,
16

(1/⇢� 1)2

�

· s⇤k  sk  C
1

R2

min

· nmmk

T⌫4 logmk
,
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where C
1

> 0 is an absolute constant. We define ⇢ and
⌧ as

⇢ = 1� 2[
p
m� 6Kmk(r/2 +R

max

)⌫K+2]p
m(16⌫4 + 1)

,

⌧ =
C

2

⌫2

16⌫4 + 1

r

Tmks⇤k logmk

nm
,

where C
2

> 0 is an absolute constant. Then for any
k = 1, . . . ,K, we have with probability at least 1 �
4m2

k exp{�nm/(2Tmk)} that

�

�b

⌦

(t)
k �⌦

⇤
k

�

�

F
 ⌧

1�p
⇢
+
p

⇢t · r. (4.1)

In Theorem 4.2, we require the initial points to be

close to ⌦

⇤
k, that is,

b

⌦

(0)

k 2 BF (⌦⇤
k, r), where r is the

radius of the balls. This can be achieved by various
strategies, as discussed in Section 3.3.

Remark 4.3. In (4.1) of Theorem 4.2, the first
term is the statistical error, and the second term
is the optimization error. The statistical er-
ror of the estimator returned by our algorithm is
OP (

p

mks⇤k logmk/(nm)). This matches the minimax
lower bound when the rest K � 1 precision matrices
are known (Cai et al., 2016; Sun et al., 2015). There-
fore, our statistical rate is optimal. In order to ensure
⇢ < 1, we assume that r 

p
m/(3Kmk⌫

K+2)�2R
max

.
Recall that R

max

= maxk k⌦⇤
kkF and ⌫ is the upper

bound of the largest eigenvalue of ⌃⇤
k, are constants,

we can always find a small enough r via an appropri-
ate initialization algorithm. This enables linear con-
vergence rate for the optimization error. Specifically,
when T is chosen to be no less than C log(nm/(mks

⇤
k)),

where C > 0 is a constant, the optimization error be-
comes smaller than the statistical error, which makes
the total estimation error optimal.

An direct implication of Theorem 4.2 is that, when
K � 2 and the dimensions mk’s are of the same order
of magnitude, the estimator by our algorithm is con-
sistent even there is only one observation, i.e., n = 1.
This is consistent with the best known algorithms for
sparse MGGM (Zhou et al., 2014; Chen and Liu, 2015)
and STGGM (Sun et al., 2015).

Remark 4.4. The statistical rate of our algorithm is
the same as Sun et al. (2015). However, as will be
shown in the experiments, our algorithm is more ef-
ficient and achieves higher accuracy than Sun et al.
(2015). The reason is that our algorithm performs
gradient descent rather than exact minimization in
each iteration. This saves the computational cost.
Moreover, their analysis relies on the assumption that
k⌦⇤

kkF = 1 for k = 1, . . . ,K, which is often not true
in practice and can not be achieved for all k by nor-
malization when K � 2.

5 EXPERIMENTS

In this section, we present numerical results on both
synthetic and real world datasets to verify the per-
formance of our algorithm, and compare it with the
state-of-the-art methods.

5.1 Baseline Algorithms

We compare our approach (AltGD) in Algorithm 1
with the following three baseline methods: (1) the k-
nearest neighbors k-NN classifier with k = 1 using Eu-
clidean distance; (2) sparse Gaussian graphical model
(SGGM) for vectorized tensor data, where we choose
QUIC1 algorithm to solve the graphical Lasso estima-
tor; (3) sparse tensor-variate Gaussian graphical model
(STGGM) (Sun et al., 2015) with an algorithm, de-
noted by Tlasso, which uses alternating minimization
to estimate the precision matrices.

Specifically, in the simulation experiment in Section
5.2, we compare the performance on precision matrices
estimation of our algorithm AltGD with that of Tlasso.
And in the real world data experiment, we compare the
performances of all methods on classification since the
true precision matrices are unknown, we will discuss
the details in Section 5.3 and 5.4. Since both Tlasso
and AltGD require good initialization points, we adopt

random definite positive matrices b

⌦

(0)

1

, . . . , b⌦
(0)

K as the
initial points. We found that random initialization
works very well in our experiments. Note that the
k-NN method does not provide estimation for param-
eters, and the SGGM method does not provide the es-
timation for every individual precision matrix on each
mode. Therefore they are not compared in the syn-
thetic data experiment.

5.2 Synthetic Data

In the synthetic experiment, we considered three 3rd
order tensor data of di↵erent dimensions: (1) m

1

=
10,m

2

= 15,m
3

= 20, (2) m
1

= 25,m
2

= 25,m
3

= 25,
and (3) m

1

= 10,m
2

= 10,m
3

= 100. We set s⇤k =
3mk, for k = 1, 2, 3. For example, in Setting (1), the
true sparsity levels of ⌦

1

,⌦
2

,⌦
3

are 30%, 20%, 15%
respectively. We first generated the precision ma-
trix ⌦k by huge package (Zhao et al., 2012), and we
chose ‘hub’ pattern as the graph structure. Then the
vectorized tensor samples vec(T

1

), . . . , vec(Tn) were
generated following multivariate normal distribution
N (0,⌃⇤

3

⌦ ⌃

⇤
2

⌦ ⌃

⇤
1

), where ⌃

⇤
k = (⌦⇤

k)
�1 and sam-

ple size n = 100. Finally, recall the tensor algebra in
Section 3.1, we used the inverse transformation of vec-
torization to obtain the tensor samples T

1

, . . . , Tn 2
Rm1⇥m2⇥m3 .

1
http://www.cs.utexas.edu/

~

sustik/QUIC
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Table 1: Estimation errors of precision matrices in terms of Frobenius norm on the synthetic datasets.

k⌦(T )

1

�⌦

⇤
1

kF k⌦(T )

2

�⌦

⇤
2

kF k⌦(T )

3

�⌦

⇤
3

kF Time (s)

Setting 1
Tlasso 3.5915±0.0026 3.8643±0.0040 4.7183±0.0049 22.63
AltGD 2.8669±0.0043 3.3456±0.0512 3.6398±0.0225 7.84

Setting 2
Tlasso 2.1823±0.0215 2.1665±0.0361 2.1635±0.0248 79.16
AltGD 1.7004±0.0041 1.7044±0.0055 1.7009±0.0059 40.74

Setting 3
Tlasso 4.4356±0.0011 4.4355±0.0007 12.1631±0.0028 68.70
AltGD 3.2393±0.0180 3.2549±0.0044 9.9892±0.0241 47.05
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Figure 1: The logarithm of the estimation and optimization errors of ⌦⇤
k, k = 1, 2, 3, in terms of Frobenius norm

under Setting (2): m
1

= 25,m
2

= 25,m
3

= 25.

The regularization parameter � in Tlasso, and the
truncation parameters sk’s in our AltGD were tuned
by grid search. The step sizes ⌘k’s of our algorithm are
chosen by line search. The best results were reported
for each method. Both methods were run with maxi-
mum iteration T = 200. Figure 1 shows the logarithm

of the estimation errors k⌦(t)
k �⌦

⇤
kkF and optimization

errors k⌦(t)
k � b

⌦kkF versus number of iteration t under
Setting (2). The optimization error of our algorithm
decays linearly (after taken logarithm) to zero. This
confirms the linear convergence rate of our algorithm.
In addition, the statistical error of our estimator con-
verges to a value larger than zero, which dominates
the total estimation error. We did not plot the es-
timation errors versus number of iterations for Tlasso
since it employs an exact minimization. In Figure 2 we

also plotted kb⌦(T )

1

�⌦

⇤
1

kF against the scaled statisti-
cal error

p

m
1

s⇤
1

logm
1

/(nm), which exhibits a linear
dependency and validates our theory. In Table 1 we
summarize the performances on precision matrix esti-
mation between our algorithm AltGD and the Tlasso.
We report the mean and standard error of estimation

errors over 10 replications in Frobenius norm, where
we used di↵erent samples in each replication. From
Table 1, it can be seen that, in all settings, our method
AltGD gives smaller errors than Tlasso in the estima-
tion of precision matrix on every mode. Furthermore,
our AltGD is also more e�cient in terms of running
time.

We included more experiment results for other settings
in the longer version of this paper.

5.3 Stimulus Classification Based on fMRI

Data

In this experiment, we test our algorithm on fMRI
data. Since fMRI data are high-dimensional tensor
data, we apply our method to investigate patterns
of subject ‘04820’ in the StarPlus fMRI experiment2

(Mitchell et al., 2004).

During the fMRI data recording, the subject was asked

2
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/

theo-81/www/
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Table 2: Comparison of methods in terms of classification accuracy (%) and training time (in second) on the
fMRI datasets. Note that k-NN method does not have a training time.

Dataset Data 1 Data 2 Data 3

Accuracy Time (s) Accuracy Time (s) Accuracy Time (s)

k-NN 58.40±7.04 - 48.80±9.10 - 46.00±5.42 -
SGGM (QUIC) 77.64±10.15 0.02 65.40±6.13 0.01 66.60±9.09 0.02
STGGM (Tlasso) 78.42±8.37 3.07 65.00±8.07 3.45 68.80±10.01 4.80
STGGM (AltGD) 88.40±3.98 0.15 70.40±6.72 0.14 73.20±5.83 0.15

Table 3: Comparison of methods in terms of classification accuracy (%) and training time (in second) on the
EEG datasets. Note that k-NN method does not have a training time.

Dataset Data 1 Data 2 Data 3

Accuracy Time (s) Accuracy Time (s) Accuracy Time (s)

k-NN 41.00±5.89 - 65.00±6.72 - 52.88±5.64 -
SGGM (QUIC) 73.33±6.67 16.74 80.63±9.19 15.45 69.09±11.37 18.64
STGGM (Tlasso) 80.67±7.17 41.90 92.81±3.62 47.05 74.24±4.23 33.36
STGGM (AltGD) 82.33±4.73 18.86 93.50±3.29 16.59 76.21±4.63 28.99

p
m1s$1 logm1=(nm)
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Figure 2: Scaled estimation errors for ⌦⇤
1

in Frobenius
norm. We fixed the dimension as Setting (1): m

1

=
10,m

2

= 15,m
3

= 20 and varied the sparsity s⇤
1

.

to perform 40 tasks. In each task, the subject was
shown an image and a sentence. The sentence either
explained the image—for example, an image of a star
with a plus above is paired with the sentence “The plus
is above the star”—or negated the image. We used the
subject’s fMRI measurements of 5, 015 voxels sampled
on a 64⇥ 64⇥ 8 grid in the brain across 54� 55 time
points. We generated dataset 1 by choosing two dif-
ferent stimuli from the same subject in this data, each
consisting of 55 (samples size) tensors with dimension
6⇥8⇥3 extracted from the 64⇥64⇥8 grid. Moreover,

we classified the tensors into two classes according to
the stimulus, so each class contains 55 samples which
are assumed to follow tensor-valued normal distribu-
tion. Dataset 2 and 3 were generated in the same way
but from di↵erent subjects.

Since the true precision matrices of the real tensor data
are unknown, we use classification as a surrogate to
measure the estimation performance. For each of the
two stimuli (i = 1 or 2) we define the following discrim-
inant function, which is proportional to the negative
log likelihood function of TGGM:

�i(T ) = vec(T )>(⌦i
1

⌦ . . .⌦⌦

i
K)vec(T )�

K
X

k=1

log |⌦i
k|,

(5.1)

where T is a K-order tensor sample and ⌦

i
1

, . . . ,⌦i
K

are the estimated precision matrices based on training
data from class i. We classify each tensor sample T
to the class i associated with the smaller �i(T ), where
the two classes correspond to di↵erent stimuli from
the same subject. Note that for classification analysis
of the SGGM model, we plug the estimated precision
matrix for vectorized tensor data into the discriminant
function to replace the Kronecker product.

For each dataset, we randomly partitioned the samples
into the training (80%) and testing (20%) sets. We re-
peated the partition process 10 times and calculated
the mean and standard deviation of the classification
accuracy over the 10 repetitions. In each repetition,
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the regularization parameters in SGGM method and
Tlasso method were tuned by 3-fold cross validation
on the training set. The truncation parameters sk’s in
AltGD were also tuned by 3-fold cross validation on
the training set. The step size of AltGD is chosen by
line search. Tlasso and AltGD were run with T = 40
iterations. Table 2 summarizes the mean and standard
error of classification accuracies of di↵erent methods
over 10 repetitions. We also report the average train-
ing time over 10 repetitions for di↵erent methods ex-
cept k-NN, which does not have training time.

Table 2 shows that our proposed algorithm outper-
forms the other methods in terms of classification accu-
racy and training time. Note that QUIC algorithm for
SGGM is also very fast but achieves much worse accu-
racy. The reason is that our method takes into account
the precision matrix structure on each mode, and this
information is totally lost in k-NN and sparse SGGM
method. In addition, our algorithm is able to achieve
a linear rate of convergence and attain the minimax
optimal statistical rate according to our main theory.
Our algorithm AltGD also outperforms Tlasso even
though they achieve the same statistical rate (while
under di↵erent conditions). This is probably due to
the very strong assumptions in their analysis, whereas
our approach requires a much milder condition.

5.4 EEG Data of Motor Imagery

In this experiment, we applied the proposed algo-
rithm to the EEG datasets from the database3. These
datasets were recorded from several healthy subjects.
The cue-based BCI paradigm consisted of two mo-
tor imagery tasks: the imagination of movement of
the left hand (LH) and right hand (RH). Within each
trial, subjects were presented with visual stimuli while
their brain activities (in µV ) were measured at 256
Hz for 1 second. We used three subsets of the EEG
data, with two classes (i.e., tasks) in each datasets: one
class for LH observations and the other for RH. Each
class in three datasets has 75, 81, and 165 samples re-
spectively. For dataset 1, the time series data were
converted into 64 ⇥ 24 spectrograms using short-time
Fourier transform with Hamming window of length 64,
34 overlapping samples, leading to 3-mode tensors of
size 6 ⇥ 64 ⇥ 24. The spectrograms were normalized
across samples to have zero means and unit variances.
Similar operations were taken on datasets 2 and 3,
leading to 3-mode tensors of size 6 ⇥ 64 ⇥ 32 with 81
samples for each class, and 6 ⇥ 64 ⇥ 24 tensors with
165 samples each class, respectively.

We used the same discriminant function (5.1) as in

3
http://www.bsp.brain.riken.jp/

~

qibin/homepage/

Datasets.html

the fMRI experiment to evaluate di↵erent methods’
estimation performance. The same as in the previous
experiment, we randomly partitioned the samples in
each dataset into the training (80%) and the testing
data (20%). We repeated the partition 10 times and
calculated the mean and standard deviation of classifi-
cation accuracy over the 10 repetitions. In each repeti-
tion, the regularization parameters in SGGM method
as well as Tlasso method were tuned by 3-fold cross
validation. The truncation parameters sk’s in AltGD
were also tuned by 3-fold cross validation on the train-
ing sets. The step size of AltGD is chosen by line
search. Tlasso and AltGD were run with T = 40 iter-
ations.

Table 3 summarizes the experimental results for EEG
data. Again, the proposed algorithm outperforms the
other methods in terms of classification accuracy and
training time, which is consistent with previous exper-
imental results on fMRI data. This again validates the
superior performance of our algorithm.

6 CONCLUSIONS

We proposed a sparsity constrained maximum likeli-
hood estimator for STGGM, and develop an e�cient
alternating gradient descent algorithm for solving the
nonconvex optimization problem corresponding to the
estimator. Despite the nonconvexity of the optimiza-
tion problem under study, we prove that the proposed
algorithm achieves a linear convergence rate to the un-
known precision matrices up to the optimal statical
error. Experiments on both synthetic and real brain
imaging data further support our theory.
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