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ARTICLE INFO ABSTRACT

Keywords: The focus of this paper is on evaluating brain responses to different stimuli and identifying brain regions with

fMRI different responses using multi-subject, stimulus-evoked functional magnetic resonance imaging (fMRI) data. To

Hemodynamic response function jointly model many brain voxels’ responses to designed stimuli, we present a new low-rank multivariate general

Mat}’i’{ factorization linear model (LRMGLM) for stimulus-evoked fMRI data. The new model not only is flexible to characterize

Optimization variation in hemodynamic response functions (HRFs) across different regions and stimulus types, but also enables

Ss;‘fz Lanzauon information “borrowing” across voxels and uses much fewer parameters than typical nonparametric models for
HRFs. To estimate the proposed LRMGLM, we introduce a new penalized optimization function, which leads to
temporally and spatially smooth HRF estimates. We develop an efficient optimization algorithm to minimize the
optimization function and identify the voxels with different responses to stimuli. We show that the proposed
method can outperform several existing voxel-wise methods by achieving both high sensitivity and specificity. We
apply the proposed method to the fMRI data collected in an emotion study, and identify anterior dACC to have
different responses to a designed threat and control stimuli.

Introduction

Functional magnetic resonance imaging (fMRI) is widely used in
psychology experiments to measure brain responses to a designed
sequence of stimuli, because it provides noninvasive measurements of
human brain activity with a high spatial resolution of the entire brain.
Typical fMRI data of each subject from one experimental session consist
of hundreds of thousands of spatially indexed time series of identical
length. Each time series, usually of several hundred time points with unit
time (repetition time) ranging from 0.5s to 2, indicates brain activity
changes over time at one brain location corresponding to a small 3D
cubic volume, called voxel, in the brain. In typical multi-subject fMRI
experiments, dozens or hundreds of subjects’ functional brain responses
to designed stimulus sequences are measured. Since human brain activity
varies by time, regions, subjects, and inputs to the brain, such multi-
subject, stimulus-evoked fMRI data not only are massive in size, but
also are highly complex and contain immense noise.

For fMRI experiments using a designed stimulus sequence to evoke
human subject brain activity (in either event-related or block designs), a
typical research focus is on evaluating the brain response to each stim-
ulus type, usually within the framework of a generalized functional linear
model, also called the general linear model (GLM) in neuroimaging
literature (Friston et al., 1995; Goutte et al., 2000; Worsley and Friston,
1995). The GLM connects fMRI time series of each voxel to the stimulus
sequence through an unknown hemodynamic response function (HRF).
The focus of fMRI data analysis within the GLM is to estimate the HRF, as
it summarizes each brain region's response to a stimulus. Many ap-
proaches have been developed in the literature to estimate HRFs, as
explained in detail below.

Parametric methods for HRFs include the Poisson model (Friston
et al., 1994b), the canonical HRF (Worsley and Friston, 1995) as a dif-
ference of two Gamma density functions (Worsley et al., 2002), a linear
combination of the canonical HRF and its first order derivative (Calhoun
et al., 2004; Friston et al., 1998; Glover, 1999; Liao et al., 2002), an
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inverse logit model (Lindquist and Wager, 2007), and many others.
Nonparametric methods, usually representing the HRF by a linear com-
bination of quite a few functional bases, are more flexible in character-
izing the variation of HRFs across different brain areas, subjects, and
stimuli. Popular nonparametric methods include the finite impulse
response (FIR) method (Dale, 1999; Lange et al., 1999), smooth FIR
(SFIR) (Goutte et al., 2000) and many other nonparametric estimates,
which impose regularization on the roughness of HRF estimates (Casa-
nova et al., 2008, 2009; Marrelec et al., 2003; Marrelec et al., 2001;
Vakorin et al., 2007; Zhang et al., 2007). (Zhang et al., 2013, 2014b) built
flexible semi-parametric models for subjects’ HRFs to characterize both
population-wide and subject-specific properties of the brain activity
while accommodating variability in HRFs across different brain areas and
stimuli.

The approaches mentioned above for HRF estimation within the GLM
framework perform massive univariate analysis, that is, analyze one
voxel's fMRI time series at a time. Since spatially adjacent voxels tend to
have similar functions and similar fMRI data, it is more efficient to
incorporate spatial information of voxels into the HRF modeling and
estimation. Several approaches have been developed in this direction.
Assuming that the HRFs of voxels within the same parcel share the same
functional shape (Chaari et al., 2012; Makni et al., 2005, 2008; Vincent
et al., 2010), proposed to use a spatially adaptive prior for HRF heights of
voxels in the same parcel. Using a Poisson HRF (Buxton and Frank, 1997;
Friston et al., 1994b) (Zhang et al., 2014a, 2016), developed Bayesian
methods that can accommodate the complex spatial and temporal cor-
relations among fMRI time series. The reference Degras and Lindquist,
2014 have recently developed a hierarchical model with a penalization
approach to simultaneously detect activated brain regions and estimate
HRFs in multi-subject fMRI studies but with the assumption that HRF
shapes are the same across different stimulus types.

The existing approaches to HRF estimation within the GLM, as
mentioned above, are mainly focused on estimating the HRF of each
stimulus and mapping the brain's activated regions. In this paper, we
focus on comparing HRFs. Specifically, in many psychological fMRI
experiments—such as the one presented in Section 3, the researchers
compare the brain responses to a stimulus of interest and to a control
stimulus and aim to locate the brain regions with different responses to
the two stimuli. A conventionally used approach is to extract charac-
teristics, usually the height of HRF estimates, and compare extracted
HRF characteristics through statistical tests. This approach, though
intuitive and straightforward, has the following three limitations. First,
subjects' HRF estimates tend to have large variability due to the low
signal-to-noise ratio (SNR) of each subject's fMRI data. As a result, the
characteristics of HRF estimates have large variability. Second, tests on
one HRF characteristic may fail to identify differences in other HRF
characteristics. For example, a t-test on comparing HRF heights usually
fails to detect HRF shape differences. Third, tests on HRF characteristics
are essentially voxel-wise analysis, ignoring the spatial property of
fMRI data.

To address these limitations, we propose a new multivariate GLM
(MGLM) to jointly model all voxels' responses to stimuli, and develop a
new estimation method to compare HRFs of different stimuli. Specif-
ically, with basis representation of all voxels' HRFs, we factorize the
matrix of all voxels' basis coefficients into a product of two low-rank
matrices, one corresponding to the temporal dimension of fMRI data
and the other corresponding to the spatial dimension. We refer to these
two matrices as the temporal and spatial parameter matrices and the
ensuing MGLM as the low-rank MGLM (LRMGLM). This new model
brings three concrete advantages. First, with the low-rank representation
of many voxels' HRFs, the number of model parameters is significantly
reduced. Second, the low-rank representation implies a common struc-
ture across different voxels’ HRFs, enabling “borrowing” information
across different voxels, thus increasing HRF estimation efficiency. Third,
by employing the temporal and spatial parameter matrices (to summarize
temporal and spatial properties of the brain activity), the proposed model
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enables separating the spatial and temporal information in the data, and
thus, directly addresses the complexity in analyzing fMRI data.

We formulate estimation of the new LRMGLM as an optimization
problem, and introduce a new penalization criterion with regularization
on the temporal and spatial matrices. Specifically, we use penalty func-
tions of the two matrices to ensure spatial smoothness of voxels’ HRFs,
temporal continuity of HRFs, and sparsity of identified brain regions.
Moreover, we develop an efficient optimization algorithm to minimize
the criterion, evaluate population-wide brain activity, and map the brain
regions that respond differently to stimuli.

The rest of the article is organized as follows. In Section 2, we
introduce the LRMGLM for stimulus-evoked fMRI data, formulate the
ensuing model estimation into a non-convex optimization problem, and
develop a fast optimization algorithm to estimate the model. A fast
procedure to choose the penalty parameters in the optimization function
is also recommended. In Section 3, we compare the proposed method
with several standard approaches to HRF estimation via simulation
studies. We then apply the proposed method to the data collected in an
fMRI experiment involving emotion stimuli and identify brain voxels
with different responses to two designed stimuli. Finally, section 4 has a
discussion.

Materials and methods
A low-rank multivariate general linear model (LRMGLM)

Let yi(t), t =4, 25,...,T5, i=1,2,--,n, and j=1,2,--.J, be the
observed fMRI time series at brain region j for subject i, where §, ranging
from 0.5 to 4, is the experiment unit time for each 3D brain image to be
captured. The J brain regions under study are either J voxels in a region
of interest (ROI) or defined anatomically or functionally by some brain
parcellation technique (Flandin et al., 2002) or clustering algorithm
(Thirion and Faugeras, 2003).

The GLM connects the observed fMRI data to the brain response to a
stimulus through a convolution between a stimulus function and a HRF.
For an fMRI experiment with K different stimuli, the GLM is

K
Vi) =D (0 i+ > [ohl, (w)vi(e — w)du + (1), 6h)
k=1

where Di(t) € )" is a vector of given functions at time t, d} is a column

vector of r coefficients, v}((t —u),k=1,...,K, is a known function, m is a

fixed constant, and LJ‘ (t) is an error term. The stimulus function, v (t),
describes the evoked time of the kth stimulus: vi (t) = 1 if the stimulus is
evoked at time t in the experimental session for subject i; otherwise, it
equals 0. The HRF h}i._k(u), defined on the domain [0, m]|, characterizes
subject i's brain response to the kth stimulus at brain voxel j. Here, the
term D(t) d} characterizes a low frequency drift in the observed fMRI
data due to subject's motion, respiration, heartbeat, and machine noise.
Different approaches have been developed to correct for this drift effect,
including applying a high-pass filter to the fMRI data and modeling the
drift by a low-order polynomial function of time (Brosch et al., 2002; Luo
and S Puthusserypady, 2008; Smith et al., 1999) or spline functions.
Following the practice by (Friman et al., 2004; Friston et al., 2000), in
this application, we let the covariates D(t) be discrete cosine transform

basis set functions D(t) = (\/Z,TTcos(n IL) mcos(r % %)) (su-
perscript i is omitted, because the covariates are identical across sub-
jects). We use a high-pass 128-s cutoff, thatis, r=2TRT/128 +1=7.

Different from standard approaches applying the GLM, (1), to one
voxel's fMRI time series at one time and estimating each voxel's HRFs
independently, we propose a joint model for all voxels' fMRI data within
the GLM framework. We first represent h;f‘k (t) with fourth-order B-spline
bases:
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L
iy (n= Z (”}r,k‘bl(f)~
-1

where the basis functions b;(t) are chosen based on an equally-spaced
partition with a unit-one inter-knot distance of the interval [0, m|. That
is, the partition knots of [0,m| are (t, =0,t; =1,...,t;,, = m) and the
number of basis functions L equals 4 + m — 1, which is determined by the
fourth-order and unit-one inter-knot distance accordingly. Moreover, we

= w_;EL.k =0 to satisfy the boundary condition that

hi; (0) = i, (m) = 0. The choice of basis functions is the same as that by

i
let Wk

Zhang et al., 2013. We use B-spline bases because they are effective for
representing smooth functional curves (Boor, 2001; Eubank, 1999;
Ruppert et al., 2003; Wahba, 1990). Existing studies have already shown
that HRFs have a smooth curve, associated with the underlying smooth
changes in blood oxygenation (Aguirre et al,, 1998). Considering the
above, (Zhang et al., 2007; Vakorin et al., 2007) also used B-splines bases
to represent HRFs.

Let ¥f = (yi(1),...¥{(T))’, Y be a T xJ matrix with the (t,j)th
element equalling y}i(t), and D be a T xr matrix with the tth row
equalling D(t). Let B, = (by(t), ..., by(t)), X} be a T x L matrix with the
(t,1)th element equalling /7'b;(u)-vi (t — u)du, Q}_k = (“’}1‘;‘- "’;L.k)” Q
be an L x J matrix with the jth column equalling Qik’ d be an rxJ

(a;:(l), ...,aj:(T})', and El bea
T x J matrix with the jth column equalling 8)‘
The GLMs (1) for all voxels” fMRI time series with the above basis

representation of HRFs can be written in a matrix form

matrix with the jth column equalling d, ¢}

K
Y =Dd + > X, +€ andY’

k=1

(2

K
Dd + > X, +E.
k=1
We call this model the multivariate GLM (MGLM). Although basis
coefficients Q} for k=1,...,K can be estimated using ordinary least
squares (OLS) estimation approach, the ensuing OLS estimates may have
large variances and are unreliable to map activated brain voxels/regions,
due to many parameters in the MGLM and a typically low SNR of fMRI
data. To address this, we assume that €, falls into a parameter space of a
much lower dimension, and has the form ©, = UL Vi, where Ul and V.
are L x P and P x J matrices respectively with P much smaller than J.
This form leads to a bilinear regression model of Y* in (U, Vi):

K
Y =Dd +> XUV, +E.
k=1

3

In practice, we choose P = 2 to capture major differences in magni-
tude and latency of HRFs across subjects and voxels and also to keep the
model simple.

The MGLM with a low-rank representation in (3), called the low-rank
MGILM (LRMGLM), decomposes the fMRI data into temporal and spatial
two parts. The matrix Ui—whose elements Ufp_ w» [=1,...,L and

p=1,...,P, are associated with L functional bases—captures principal
functional shapes shared by J voxels' HRFs in response to the kth stim-

ulus; the matrix V}'(—whose elements V;Ejk, p=1,...,Pandj=1,..J,

are associated with J voxels—characterizes each voxel's unique property,
i.e., voxel-specific characteristic, in response to the kth stimulus. We refer
to UL and V! as ith subject's temporal and spatial matrices, respectively.
Independent component analysis (ICA) (Arbabshirani et al., 2013;
Beckmann and Smith, 2005; Calhoun and Adali, 2006; Calhoun et al.,
2001; Guo, 2008; Guo and Tang, 2013; Shi and Guo, 2014) uses a similar
idea of separating spatial and temporal information, but is usually
applied to resting-state fMRI, i.e., not considering stimulus effects. The
proposed LRMGLM analyzed simultaneously different stimulus effects on
the brain activity.

In comparison with the MGLM (2), the LRMGLM has three significant
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advantages. First, the LRMGLM captures the common temporal proper-
ties of HRFs shared by J voxels and translates such common properties to
a rank constraint on the vector of estimates. As such, the LRMGLM
combines information across voxels to estimate their HRFs. Second, the
LRMGLM uses much fewer parameters than existing nonparametric
methods to represent HRFs, and thus the ensuing estimates have much
smaller variances. Third, by allowing different HRF shapes across stim-
ulus types and brain regions, the LRMGLM provides adequate model
flexibility for accommodating the variability of brain activity.

Outside the imaging literature while inside the statistics literature,
regression models in a formulation similar to (3) have been proposed by
(Gabriel, 1998; Potthoff and Roy, 1964; Srivastava et al., 2009). In these
regressions, the expectation of the response is a product of three matrices:
FY = XOZ, where X and Z are known and © is the parameter matrix. The
reference Hoff, 2015 proposed a similar multilinear tensor regression
model in which FY = ©,X0,', where ®; and @, are unknown parameter
matrices.

Note that the proposed LRMGLM is different from typical tensor
regression models (Basu et al., 2012; Li et al., 2013; Shi et al., 2014; Zhou
et al.,, 2013). The tensor regression, also called scalar-on-image regres-
sion in the imaging application, uses ultra-high dimensional neuro-
imaging data as predictors and low-dimensional scalar variables as the
response. In contrast, in the proposed LRMGLM, the predictor matrix is of
low dimension, and the response and coefficient matrices are of similarly
high dimensions. As such, the proposed model is more related to matrix
factorization (Agarwal et al., 2012; Koren et al., 2009; Feng et al., 2013;
Balgis Samdin et al., 2017; Rendle, 2012) and factor models (Bai and L4,
2002, 2012). Other related factor-analytic models for brain data (fMRI
and EEG), such as those by (Allen et al., 2014; Balgis Samdin et al., 2017;
Ting et al., 2017; Wang et al., 2016), typically conduct factor analysis or
matrix decomposition of the observed data in matrix form. In contrast,
the LRMGLM decomposes the coefficient matrix after regressing for the
stimulus effects on the brain activity.

Population-wide LRMGLM. The model (3) is for within-subject fMRI
data analysis. To evaluate population-wide brain activity, we propose a
new population-wide LRMGLM

K
Y’:Dd#ZX;(ﬁkVﬁrfz'.

k=1

4

Here, Uy with elements Uy, =1, ...,Land p =1, ..., P, and Vi with
elements ij_k, p=1,...,P,and j=1,....J, are population-average tem-
poral and spatial parameter matrices, respectively. Intuitively, U, and V,
are the means of the subject-specific parameters U, and Vi across sub-
jects. In comparison with the model (3), the model (4) puts the differ-
ences between subject-specific and population-average parameters into

the error term E.

Unlike typical group analysis (Guo, 2008; Guo and Tang, 2013; Xu
et al., 2009; Zhang et al., 2016) of multi-subject fMRI data, we do not
introduce subject-specific parameters for HRFs in the model (4). Since
the focus of this paper is on studying the population-wide brain activity,
we use (4) to reduce the number of free parameters so that we can
evaluate population-wide brain activity with high efficiency and
computationally fast. One may modify (4) and introduce subject-specific
parameters to accommodate variation in brain activity across subjects.
The key model parameters in (4) are summarized in Table 1.

Optimization function for parameter estimation

Detecting Regions with Different Responses. We estimate the
model (4) and detect brain regions with different responses to a pair of
stimuli by minimizing a penalized sum of squared errors (PSSE). The
PSSE uses three penalties to mitigate three practical complications. First,
the HRF is a continuous function, thus a roughness penalty is imposed on
the matrix Uy to induce temporal smoothness of HRFs, i.e.,
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Table 1
Notations of key parameters.

Parameter ~ Description

y! The fMRI data in a T x J matrix form for J voxels of the ith subject.

XL The T x L design matrix of the ith subject associated with the kth
stimulus.

D(t) A vector of values of r discrete cosine transform basis set functions at
time t.

D A T x r matrix with the tth row equalling D(t).

dj Drift coefficients for voxel j of the ith subject.

d' A T x J matrix of drift coefficients with the jth column equalling dj

v;'( The ith subject's P x J spatial matrix introduced in Model (3) for
characterizing
voxel-specific responses of J voxels to the kth stimulus.

Vi The P x J population-average spatial parameter matrix introduced in
Model (4)
corresponding to the kth stimulus.

Viik The element in the pth row and jth column of the matrix V.

U;c The ith subject's L x P temporal matrix introduced in Model (3) for
characterizing
common HRF shapes shared across J voxels in response to the kth
stimulus.

Ui The L x P population-average temporal parameter matrix introduced in
Model (4)
corresponding to the kth stimulus

Tpi The element in the Ith row and pth column of the matrix Uy.

PO =3/ (im.k-b523<:>)'af.

Second, since spatially close voxels tend to have similar fMRI time
series and thus similar HRFs, a regularization that utilizes voxels” spatial
information is imposed on Vi to induce spatial smoothness of HRFs, i.e.,

#(Vi) = Z 2 (Ve Vi)

where j ~ j denotes spatially adjacent voxels j and j. The penalty (V)
ensures that adjacent voxels have similar voxel-specific parameters Vy;
and thus similar HRFs. We here use a one-neighbor dependence to avoid
oversmoothing, especially for boundary voxels. Third, we impose a
sparsity-inducing penalty on spatial parameters V. to locate regions with
different responses to stimuli. Without loss of generality, we compare
brain responses to the first two stimuli and impose the following sparsity
penalty on the difference of spatial parameter matrices,

J

VL) =3

j=1

P
Z (VFJ,I - Vﬂj-l)z-
=1

Let @ = {d', U, V,,i=1,...,n.k =1,...,K}. Overall, we estimate the
LRMGLM and identify brain voxels/regions with different responses to
stimuli 1 and 2 through minimizing the following PSSE:

PSSE(®) = SSE(®) + »iw(ﬁk) + rtigg(ﬁ) + p- 7 (V,, V), (5)

where SSE(@) =15 | Y - Dd -~ Y2X X, Ty Vil >

n

Iterative algorithm for minimizing the PSSE

Let # = {Up,k=1,....K}, 7 ={Vi,k=1,...,K},
d = {d,i=1,...,n}. We propose the following alternating convex search
algorithm to minimize PSSE(®), which iterates between two major
convex optimization steps until convergence:

and
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1. Given 74 and d, find minimizer Va of
PSSE( 7*(&, #) = SSE(®) + 13X | R(Vi)) + -7 (V1, V).

2. Given 7, find minimizer d and 74 of
PSSE(d, #| #") = SSE(®) + 435 | %(Uy).

Step 2 is straightforward, because given 77, PSSE(d, #|7") is a

quadratic function of d and #, and the analytic formula of the mini-
mizer exists. See Appendix A for the derivation of the minimizer. Step
2 can be efficiently solved by using a computational algorithm
developed in (Robinson, 1991; Ruppert et al., 2003). For Step 1, since

the objective function PSSE( 7|d, #) is convex and non-differentiable,

we use an iterative method called Alternating Linearization Proximal
Gradient [Kiwiel et al., 2006, Lin et al., 2014, ALPG] to find its
minimizer. The main idea of the ALPG is to iteratively solve two
subproblems, each involving minimization of a linear approximation
of the objective function, as explained in detail below.

We can view the objective function PSSE( 7|d, %) as a sum of two

component functions: the differentiable part DPSSE( 7 |d, #) =

SSE(@) + 7 3 ,#(V;) and the non-differentiable part u-7(Vi,Va).
Each linear approximation consists of one component function and a
linearization of the other component function. Specifically, at each

iteration, DPSSE( 7|d, #) and u-.7'(V,,V,) are linearized at points .2

and .Z» in subproblems 1 and 2, respectively, where .Z'; and .Z'», of the
same dimension as 7, are the output from solving the previous sub-
problem. Let 7™ be the estimate of 7 from the previous iteration, i.e.,
the output from solving the subproblems in the last iteration. The ALPG

algorithm for minimizing PSSE( 77|d, #/) in Step 1 is outlined in the

following.

1.1 Initialization. Set 7™, Z1, and .7 », all in the same dimension as
77, to be Oat the starting point. Let %; be the gradient of the

DPSSE( 7'|d, #) at 2.

1.1La In the subproblem 1, solve the optimization

7, = arg m)m(Zh 7/> +p 7 (V1, V) +gH 7 7 (6)

e where (-, -) stands for inner product, (%1, 77) is a linear approxima-

tion of DPSSE( 7°|d, #) at .Z, and p > 0 is a positive constant. The

term § || 77— 77| is used to penalize the distance between the
candidate .Z ', and the estimate 7™ so that the solution to the sub-
problem is in the proximity of 7™, controlled by p. We choose p = 1
in our implementation. Through our studies, we found that the
magnitude of p does not influence the efficiency of the whole algo-
rithm much.
1.ILb Calculate a sub-gradient %' of the non-differentiable partat .z »
according to:

Sy =—%—plZ,— 7). @

Then (%5, 7" — Z,) is a linear lower-approximation of u-.%(V;,V,)
since %, is a sub-gradient of u-¥(V,,V,) at .Z,. If 2", improves the
objective function PSSE( 7|d, #), update 7™ = Z 5.

1.1ILa In the subproblem 2, solve
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K
2, =arg m]in SSE(@) + 7 Z"%(vk)

k=1

+ <:¢2, 7 .2'2>

1.111.b The gradient of the differentiable part at .z can be calculated
by the following:

517 =7 ®

Gy=-%-p(Z, - 7). 9

If .z, improves the objective function value of PSSE( 77|d, %), up-
date 77 = 7.

1.IV Repeat from 1.11.a until convergence.

The efficiency of the ALPG algorithm lies in the efficiency of solving
the above two subproblems. The optimization function in (8) is quadratic
of 77, so the analytic formulation for the minimizer Z'; exists. The
optimization function in (6) is not differentiable of 7~ and it is compu-
tationally challenging to solve (6) due to the high dimension and com-
plex structure of the function u-%(Vq,V,). Despite these issues, the
function is separable in terms of the columns of V; — Vy, therefore, it can
be decomposed into J smaller problems. Each of these smaller problems,
although still non-differentiable, has a simple dual form and can be
solved efficiently with a closed-form solution. In summary, the special

form of the objective function PSSE( 7|d, #/) enables us to minimize it

efficiently by using the ALPG. The detailed description of solving the two
subproblems is given in Appendix B.

In summary, the alternating convex search algorithm converges
monotonically with improvement made after every iteration. The algo-
rithm is terminated when the improvement made is less than a thresh-
hold of 10~*. Under mild conditions such as continuity of the objective
function, the compactness of the solution set, and uniqueness of the sub-
problems’ solutions, which are satisfied in our model, the sequence of
points generated by the algorithm converge to a partial optimum of the
objective function Gorski et al., 2007.

Strategy for selecting penalty parameter

Three penalty parameters, 4, 7 and y, control the temporal smoothness
of the HRFs, spatial smoothness of estimated HRFs of spatially distributed
voxels, and the extent of sparsity in the identified brain voxels, respec-
tively. Ordinary cross-validation (OCV) and generalized cross-validation
(GCV) (Wahba, 1990) are conventional methods for choosing the penalty
parameters in penalized optimization problems. In the context of func-
tional data analysis (Reiss and Ogden, 2007, 2009), proposed GCV-based
selection procedures, and (Wood, 2011) investigated a restricted
maximum likelihood (REML) method. To select penalty values, because
these approaches are either time consuming (i.e., OCV) or not directly
applicable (i.e., REML), we propose a fast computing method.

We start with a large number of candidate values, ranging from ¢! to
e'%, for each penalty parameter. The boundary values (e ! and €'°) are
chosen such that the penalty parameters beyond this range result in
either almost no or all voxels selected. Applying the proposed alternating
convex search algorithm to fMRI data with different combinations of the
three penalty parameter values, we identify the combinations that lead to
the result satisfying two criteria: (1) Between 5% and 50% of candidate
voxels are selected; and (2) the selected voxels in the largest cluster ac-
count for more than 80% of all selected voxels. The criterion (1) ensures
sparsity while excluding the penalty parameters that result in too few
voxels selected. The criterion (ii) ensures that the selected voxels are
spatially clustered together. Based on simulation studies, we found that
the threshold varying from 50% to 80% in the criterion (ii) leads to the
same result. We here choose 80%, because it screens away most pa-
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rameters (> 80%) and the ensuring computational time is least for pen-
alty parameter selection. For each combination of the rest penalty
parameters, we calculate the correlations between each selected voxel
with its neighboring unselected voxels. (If all the neighboring voxels of
one selected voxel are selected, we exclude this voxel from the calcula-
tion.) Then, we take an average of all these correlations, and choose the
penalty parameters that give the smallest average correlation.

The intuition behind the above selection approach is two fold. First, if
too few or too many voxels are selected, many selected voxels at the
boundary of selected regions have fMRI data similar to those of the
neighboring unselected voxels. Then, the average correlation tends to be
high. Second, the average correlation is a measure of similarity between
the two groups of selected and unselected voxels at the boundary of
selected brain regions. The penalty parameter selection based on the
smallest average correlation is essentially to minimize the similarity
between the two groups.

The above correlation-based procedure selects parameters that can
balance well between selecting clusters of voxels with different activities
from unselected voxels and “borrowing™ information from neighboring
voxels based on one-neighbor dependency. Moreover, the proposed
penalty parameter selection procedure is parallelizable. Through our
simulation studies below, we show that the proposed penalty parameter
selection procedure is computationally fast and leads to voxel/region
selection with a high true positive rate (TPR) and a low false positive rate
(FPR).

Results
Simulations

Data Generation. We simulated fMRI data using the experimental
design that is same as the real fMRI experiment under study (Coan, 2010,
2011; Coan et al., 2006; Zhang et al., 2013). Each subject's fMRI data
contain 205 scans (after removing the first a few fMRI scans) with
repetition time (TR) 2s. The experiment used 4 different stimuli. We
generated different HRFs associated with the 4 stimuli, and used the
proposed LRMGLM to identify voxels with different responses to the first
two stimuli, consistent with the objective of the real psychology experi-
ment under study, to be explained in Section Illustrative example.

The simulated data distributed over a 15 x 15 x 15 lattice. Each
voxel's 4 HRFs are simulated from a semi-parametric model by Zhang
et al., 2013

(0 = Aoy (1 D). 10)

where the function ¢;;(t) characterizes the mean HRF shape of voxel j in
response to the kth stimulus across subjects, and A}‘:‘k and D;.k are subject
i's brain response magnitude and latency, respectively, at voxel j in
response to the kth stimulus. We use the semi-parametric model to
generate HRFs, because it can well describe the variation of HRFs in
magnitude and latency across subjects, voxels, and stimulus types.

Following (Worsley et al., 2002), we used a difference of two gamma
density functions to represent ¢; (t):

15 exp( — by 1) w1 exp( = byy )
_ g kt) e J
Bi(t) =By F(G]Jk) by jy F(GM) -

We let HRF parameters a j, dajks b1 jx, boji and c fixed at values of 6,
16, 1, 1, and 1/6, respectively, leading to the canonical HRF shape
(Worsley and Friston, 1995), which is widely used in the neuroimaging
literature for describing brain activities in motor and visual cortices
(Handwerker et al., 2004; Lindquist, 2008).

We let Aj={Al;j=1..J} and Di={D,j=1..J} follow
multivariate normal distributions MVN(u,,, Xa,) and MVN(p, , Ep,),
respectively. As such, p, can be viewed as the population-mean brain

an
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Parameters of simulated HRFs hj_k. Note that the HRF parameters associated with the second stimulus are for the voxels on the center 7 x 7 x 7 lattice grids while the HRF parameters of the

rest voxels are identical to those under the first stimulus.

k K, OA, Py Hp, o, Pp, ar; az by by, ¢

1 300 50 0.9 —-1 0.5 0.9 6 16 1 1 1/6
Example 1 2 350 50 0.9 —4 0.5 09 6 16 1 1 1/6

3 300 50 0.9 0 0.5 0.9 6 16 1 1 1/6

4 600 100 0.5 0 0.3 0.5 6 16 1 1 1/6

response magnitudes, and gy, is the population-mean latency at J voxels
using the canonical HRF as the baseline.

Multivariate normal distributions can be conveniently used to char-
acterize the spatial correlations among HRFs of different voxels. Specif-

ically, we let Zy(j1,j2) = ag-pl,“'“ﬁ“f, where p, is a positive constant
between 0 and 1, [|j; —j2|, denotes the Euclidean distance between
voxels j; and j», and (75‘ is the variance of the multivariate normal dis-
tribution.

Echoing the real problem of comparing brain responses to the first
two stimuli, we let the HRFs of the first two stimuli be different at the
center 7 x 7 x 7 voxels. That is, around 10.0% of voxels have different
responses to the first two stimuli. The parameter values of the multi-
variate normal distributions are given in Table 2. The HRFs of the first
two stimuli differ both in magnitudes and latency. We let the mean y;,, be
different from 0 to mimic the real problem where the activity of emotion-
related regions is different from of motor and visual cortices. Moreover,
we choose large values for p, to impose a strong spatial dependence
among HRF parameters. Fig. 1(a) shows the simulated HRFs of two
subjects at one voxel, which has different HRFs to the first two stimuli.

We generated GLM error terms E' from an autoregressive model of
order 4 (AR(4)) (Casanova et al., 2008; Zhang et al., 2013) with lag-1
correlation of 0.45:

£(0) =037 — 1) +0.14 £(t — 2) + 0.05 £(r — 3) + 0.02 (1 — 4)

+ &(1),

where e = (¢,(¢), ...,e1(£) “EMNV(0, @), ®(j1.ja) = 2-plt 20, =
0.99 and 7 =200. We let the spatial dependence among errors be
stronger than that of HRFs considering strong smoothing of fMRI data
due to the pre-processing steps.

We simulated n = 106 subjects' fMRI data—the same as the real fMRI
data, each having 205 scans separated by 2s (TR). We first used param-
eters in Table 2 to generate subjects' HRFs for voxels distributed on the
15 x 15 x 15 lattice, calculated the voxels” drift terms and AR(4) errors,
and obtained fMRI time series based on the GLM (1).

Note that the simulated data do not exactly follow the proposed
LRMGLM (3). Even with this, we show in the following that the LRMGLM
can outperform the voxel-wise methods, which actually follow the data
generating model.

Statistical Analysis and Discussion. We applied the proposed
LRMGLM to the simulated data. We compared our result to those by the
nonparametric method using Tikhonov regularization and generalized
cross validation (Tik-GCV) (Casanova et al., 2008, 2009), the smooth
finite impulse response (SFIR) method (Glover, 1999; Goutte et al.,
2000), the method using the canonical HRF and its first order derivative
as functional bases (Liao et al., 2002) (referred to as the canonical
method), and the semi-parametric (SEMI) method (Zhang et al., 2013)
developed based on the HRF generating model (10). We first used these
methods to estimate HRFs, then extracted their heights, and used t-tests
on height estimates to compare subjects’ HRFs in response to the first two
stimuli. By using different thresholds for the P-values from the t-tests, we
created the ROC curve, which shows pairs of TPRs and FPRs for different
thresholds. For comparison, we also presented the ROC curve of the
LRMGLM by using different combinations of penalty parameters.

Fig. 1(b) shows the ROC curves of the four competing methods and
the LRMGLM for simulated data. Among the four voxel-wise methods
that have been analyzed, Tik-GCV has the best ROC curve, achieving
100% TPR at the lowest FPR (around 8%). The other three methods have
much larger FPRs. For example, SEMI can select all the true voxels, but
with a FPR larger than 15%. In contrast, the LRMGLM, with an appro-
priate combination of three penalty values, can achieve 100% TPR and
0% FPR.

Fig. 1(c) shows the 3D image of voxels identified to have different
responses to the first two stimuli by using the LRMGLM with the selected
penalty parameters. The voxels in blue correspond to true positives and
those in red correspond to false positives. The LRMGLM achieved 0.3%
FPR and 100% TPR. This simulation indicates that the proposed penalty
parameter selection procedure can identify appropriate parameters
values that leads to voxel selection with both high sensitivity and
specificity.

We conducted another simulation example where the HRF shape
#;x(t) is given based on the real data and two clusters of voxels have

o _]
© ° erEer=—m—ay—> 15
- ."' L
. " .
8 1 2 s4f v .. :
= | - 10
L 0n o | * .
r g - o o R4 . -
T o 1, — | RMGLM
o Z . = SEMI 5
o | 2 _" .t -+ Canonical
b5 F o« oy ) = SFIR
© . Tik-GCV ol
o o .0 .L... 15
° 4 T T T T 10 - e
00 02 04 06 08 10 5 L7 10
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time

(a) Simulated HRFs

False Positive

(b) ROC Curves

(c) Images of Selected Voxels

Fig. 1. (a) Two subjects' HRFs associated with the first two stimuli. (b) ROC curves of five methods. (c¢) 3D Image of voxels identified to have different responses to
the first two stimuli using the penalty parameters selected by the approach in Section 2.4. Blue cells correspond to true positives and red cells correspond to

false positives.
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(a) Slice X=42

(b) Slice X=43

(c) Slice X=44

Fig. 2. (a)-(c) Images of dACC voxels identified by the LRMGLM to have different responses to threat and safety cues.

different responses to the first two stimuli. This simulation is to mimic
real data analysis results. The LRMGLM still outperformed all the other
methods. The details are provided in the supplementary file.

Illustrative example

Subjects. The fMRI data under study were collected in a psychology
study, which examined brain responses to negative emotional stimuli
(Coan, 2010, 2011; Coan et al., 2006; Coan et al., 2013). The study
recruited 106 mentally and physically healthy subjects from a larger
community sample (Allen et al., 2007).

Experimental Design. The fMRI experiment used mild electric
shocks to evoke subjects’ emotional responses. The electric shocks, at
4 mA with 1 s duration, were delivered by using an isolated physiological
stimulator (Coulbourn Instruments, Allentown, PA). Overall, the exper-
iment used a block design consisting of 4 different stimuli: threat cues,
indicating 20% chance of receiving a mild electric shock; safety cues
indicating no shock; resting periods between the cues; and 2 real mild
electric shocks. These four stimuli occurred at frequencies of 27.9%,
21.0%, 50.8%, and 0.2%.

Intense noise and enclosed space inside the fMRI scanner (Mazard
et al., 2002; Szameitat et al., 2009) can cause anxiety and uncomfort-
ableness to subjects. To correct for their brains’ emotional activity due to
the uncomfortable fMRI scanning process, we treat the brain response to
safety cues as the baseline and identify brain voxels with different re-
sponses to threat and safety cues.

Data Acquisition and Preprocessing. Data collection was
completed at Fontaine Research Park in the University of Virginia with a
Siemen's 3.0 T MAGNETOM Trio high-speed magnetic imaging device
with a circularly polarized transmit/receive head coil and integrated
mirror. Before collection of functional images, 176 high-resolution T1-
magnetization-prepared rapid-acquisition gradient echo images were
acquired to determine the localization of function (1-mm slices,
TR =1900ms, echo time (TE)=2.53 ms, flip angle =9°, field of view
(FOV) = 250 mm, voxel size=1 x 1 x 1 mm). Two-hundred and sixteen
functional T2*- weighted echo planar images (EPIs) sensitive to blood-
oxygen-level-dependent contrasts were collected in volumes of 28 3.5-
mm transversal echo-planar slices (1-mm slice gap) covering the whole
brain (1-mm slice gap, TR = 2000 ms, TE = 40 ms, flip angle = 90°,
FOV = 192 mm, matrix = 64 x 64, voxel size= 3 x 3 x 3.5 mm).

Data were preprocessed and analyzed using FMRIB's Software Library
(FSL) software [Friston et al., 1994a, Version5.98; www.fmrib.ox.ac.uk/
fsl]. Motion correction was completed using FMRIB's Linear Image
Registration Tool, and intra-modal correction algorithm tool [Jenkinson
et al., 2002, MCFLIRT], with slice scan time correction and a high-pass
filtering cutoff point of 100s. Brain extraction was completed using
BET (Smith, 2002) and smoothing completed with a 5-mm full width at
half minimum Gaussian kernel. Images were registered to Montreal
Neurological Institute (MNI) space using FLIRT (Jenkinson et al., 2002).
Trials in which participants received shocks were excluded due to
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movement artifacts.

We focus on the fMRI data in dorsal anterior cingulate cortex (dACC),
which is an emotion-related brain region of interest (Knutson et al., 2000;
Milad et al., 2007) and implicated in mental health (Dedovic et al.,
2016). We used Harvard subcortical brain atlas to determine dACC in the
fMRI data.

Statistical Analysis and Discussion. The brain region dACC consists
of functionally distinct subregions (Schulz et al., 2011), which potentially
process emotional information differently (Bush et al., 2002). Applying
the LRMGLM to the fMRI data in dACC, we aim to identify the dACC
subregion that has the most pronounced response to a negative emotional
stimulus in comparison to a control stimulus.

In total, 33% voxels have been selected. Fig. 2 shows the dACC voxels
identified to have different responses to the threat and safety cues. The
voxels identified are mainly in the anterior portion of dACC (adACC).
This result indicates the existence of distinction among subregions in
dACC, which is in line with the existing studies regarding heterogeneity
in dACC (Bush et al., 2002). According to (Etkin et al., 2011; Morris et al.,
1998), adACC plays an important role in appraising and expressing
negative emotion. Moreover, adACC is involved in regulating amygdala's
affective response to fear (Hong et al., 2014). Our analysis confirms
different extents of responses to negative emotion in dACC subregions
and identifies the subregion with the strongest response.

We also detected responses to negative emotional stimuli in the white
matter corpus callosum, in line with a growing body of evidence on fMRI
activation in white matter (Fraser et al., 2012; Yarkoni et al., 2009; Zhang
et al., 2013), especially in corpus callosum (D'arcy et al., 2006; Fabri
etal., 2011; Gawryluk et al., 2011; Mazerolle et al., 2008). The reference
(Gawryluk et al., 2014) provides potential reasons for detecting white
matter activity through fMRI. The LRMGLM is able to characterize the
white matter activity. We can use the proposed method to further
investigate white matter and gray matter brain functions.

We also applied SFIR, Tik-GCV, Canonical, and SEMI methods to the
dACC data. We found that p-values obtained were extremely small for all
the voxels (below 10 7). For comparison, we selected the top 33% voxels
with the smallest P-values and show them in Fig. 3. In general, we found
that the voxels identified by the nonparametric methods, SFIR and Tik-
GCV, tend to be scattered, possibly due to large variances of nonpara-
metric estimates. The SEMI method also identified voxels in adACC to
have different responses. Overall, the voxels identified by the SEMI
method are more clustered than those by SFIR and Tik-GCV, but more
spread out than those by the LRMGLM. The canonical method identified
two separate clusters of voxels, one at the boundary of dACC, and the
other in the corpus callosum. Though the canonical method selected
closely clustered voxels, it is difficult to provide meaningful scientific
interpretation of the ensuing results.

Overall, voxel-wise methods tend to have large FPRs for two potential
reasons. First, fMRI data have a low SNR, while second, the errors in fMRI
data at spatially close regions are strongly correlated. Consequently, the
null voxels spatially close to true voxels tend to have significant P-values,
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Slice X=42

(a) SEMI (b) Canonical

(c) SFIR (d) Tik-GCV

Slice X=43

(f) Canonical

(g) SFIR (h) Tik-GCV

Slice X=44

(i) SEMI

(j) Canonical

Fig. 3. Images of dACC voxels identified by four voxel-wise methods—SEMI, Canonical, SFIR, and Tik-GCV

and voxel-wise methods without accounting for voxels® spatial informa-
tion tend to select many null voxels. In general, the more neighboring
voxels of true voxels and the stronger spatial dependence of fMRI data,
the more false discoveries. In contrast, the proposed LRMGLM method
takes into account the spatial smoothness of the HRFs of selected voxels,
and controls the size of selected voxels based on the similarity between
selected and unselected voxels at the boundary. Thus, voxel selection by
the LRMGLM has a much smaller FPR.

Discussion

In the simulated example, HRFs of the first two stimuli differ both in
magnitude and latency. The canonical method performed poorly and
selected the voxels mainly located at the boundary of the space of
candidate voxels. Similarly, the dACC voxels with the most significant P-
values by the canonical method are also located at the boundary of dACC.
The canonical method is able to select voxels in a close cluster, possibly
because the HRF of each subject and voxel has only two free parameters,
the ensuing estimates have much less variability and the P-values of
spatially close voxels are strongly correlated due to the strong correla-
tions of the voxels’ fMRI data.

The proposed method does not compare magnitude estimates of HRFs
but rather the entire HRFs. However, the proposed LRMGLM can also be
used to detect magnitude differences, especially if there is a prior belief in
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(k) SFIR

(1) Tik-GCV

to have different responses to threat and safety cues.

this. Simulation studies (see supplementary files) show that the proposed
LRMGLM outperformed voxel-wise methods for comparing magnitude
estimates by having better sensitivity and specificity, even if the under-
lying HRFs differ only in magnitude, because the proposed method uti-
lizes all voxels’ information. Nevertheless, one drawback of the proposed
method is that it cannot tell a direction of difference, positive or negative.
Thus, further investigation of HRF estimates is needed to address this
question.

We did not use cross validation to select penalty parameters, because
we found that the ensuing voxel selection can have a high FPR. This is
possibly because though the observed fMRI data have a linear relation-
ship with HRFs in the GLM, the proposed LRMGLM is bilinear in spatial
and temporal matrices, that is, linear in U given V; and linear in Vj
given U, but nonlinear in (U, Vi). As such, the optimization function
used is non-convex, and the penalty parameters leading to small esti-
mated prediction errors do not necessarily lead to small voxel selection
eITors.

It is possible to incorporate the spatial and temporal dependence

structure of the error matrix E' into the optimization function PSSE( 0) by
replacing SSE(®) with

1 - i i X i IT T ' i i i < P IT. T
E;tr((Y Dd ZXKUAVA)I(Y D' d ZXAULVA)).

k=1 k=1
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where tr(-) denotes the trace of a matrix, and the matrix I' characterizes
the temporal and spatial correlations among the error terms. The un-
known I' can be estimated using the model fitting errors from the voxel-
wise analysis of the fMRI data under the standard GLM (1). In addition,
we can impose a structure over I' (Aubry et al., 2012) to improve its
estimation efficiency. This approach will be investigated in the future
research.

Though the proposed method can outperform voxel-wise methods in
detecting brain voxels with different population-wide responses to
stimuli, the former may not be as efficient as the latter for estimating each
subject's HRFs for two potential reasons. First, variation of brain activity
across subjects is large. The proposed LRMGLM (4) is developed mainly
for evaluating population-average brain activity rather than for esti-
mating subject-specific HRFs. We use this model to achieve high effi-
ciency in voxel selection by significantly reducing the number of free
parameters that accommodate the variation of brain activity across
subjects. Second, with the temporal and spatial matrix parameters
(U, Vi) having a nonlinear formulation, a high efficiency in voxel se-
lection does not directly translate to a small error in HRF estimation.
After all, variable selection is not the same problem as parameter esti-
mation. Extending the LRMGLM to accommodate subject-specific

Appendix A. Details of optimization step 1
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properties of brain activity will be the focus of the future research.

It took the proposed alternating convex search algorithm no more
than 2 min to finish analyzing 106 subjects’ fMRI data at almost 7000
voxels in dACC on a personal laptop using one i7 core. Roughly speaking,
for a similar experimental design with four different stimulus types, the
computation complexity of the proposed method is O(n-J?). The alter-
nating convex search algorithm is easily parallelizable and thus, can scale
up to much larger data by using parallel computing.

Acknowledgments

T. Zhang's research is funded by the Enhancement Grant by the NSF
CHARGE program at the University of Virginia and the Quantitative
Collaborative seed grant program at the UVa. J. Coan's research was
partially funded by a grant issued by the National Institute of Mental
Health. The project described was supported by Award Number
RO1MHO080725 to Coan. The content is solely the responsibility of the
authors and does not necessarily represent the official views of NIMH, the
National Institutes of Health or SAMSI. We thank the editor and two
reviewers for comments. Support from Casey Brown, Karen Hasselmo,
Alexander Tatum, and Zoe Englander is also acknowledged.

In the first step of the proposed optimization procedure, we find the minimizer for 7/ and d given fixed 7

n K K
min Y | Y -Dd Y XU Ve[ + 2> #(U).
7d k=1 k=1

The roughness penalty .%2(Uy) is given by

(12)

r L 2 -
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where R is an L x L matrix with element Ry o = fglbl(lz) (t}bg)(t)dt forh,L=1,.. L

We have vec(XLU Vi) = V;f @ Xt vec(Uy) , vec(Dd') = I; ® D vec(d'), where vec(-) stands for vectorization, @ denotes the Kronecker product, and [

is the identity matrix of size J x J. Thus,

K
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and & € R and (12) can be written in the following formulation
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The Hessian matrix of the above quadratic function is
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Optimizing (13) is equivalent to solving the linear system
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where f# =3 (2 vec(Y) and fi = FTvec(Y!) fori = 1,...,n. The system has special diagonal block structure, which can be solved by substitution.
From the last n blocks of the linear system, we can solve for vec(d') in terms of vec( %) and substitute them back to the first block. The resulting system
only has vec( #/) as unknown variables and can be solved efficiently using any linear system solver. In our implementation, we use conjugate gradient

method in MATLAB.
Appendix B. Details of optimization step 2

Solution to Subproblem 1. We present the solution to the first subproblem of the ALPG algorithm. To ease notations and complexity, we remove the
subscript and superseript of %7 and %5 to %, and of Z; and 7, to Z. Notice that Vi, Z, G, V, € R/ k=1,....K; Z, 7", ¥, and 7" have the same
dimension, ie., 7" = {Vi,k=1,...,K}, Z = {Zt,k=1,...,K}, ¥ = {Gy,k=1,....K},and 7™ = {V, k=1, ...,K}. Denote Vj to be the jth column of
Vi, and V¢ to be the (p,j)th element of V.

The first subproblem is to solve

; 14

J r
o e 7 g V2 Py o
z= ﬁfgm]m<—‘- 7 > +p JE:] ;:I (Vs — Vi) 7 =7
The non-differentiable term involves V; and V- only, parts of 7 corresponding to stimuli 1 and 2, so the solution of the problem for k # {1,2} is

_ V-G
7, =T T
P

The optimization problem in (14) for k = 1, 2 is divided into J smaller problems, each corresponding to one voxel j in the following form

_min <GJ.|7VJ,1> + <G,2-VJ,2> +,u||vj,l - vj.Z”z + g‘
Vi Via

where || .||» denotes the Euclidean norm. We introduce a slack vector § = V;; — V;» € ®*1, and the problem above is equivalent to

_min <G/I 7VJ.1> + <Gj.z,VJ,z> +p
VinVia

such that S = V;; — V5.
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Let @ € R**! be the vector of dual variables corresponding to the constraint § = V,-‘l — \_Ijg The Lagrangian function of the above optimization
problem is

_ N — _ 0 Y
#(V,,,V,,,8,a) = <Gj . ,vj‘,> + <Gj‘2,vj‘2> + 18, +’E ViV (15)
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We see that the minimum of the Lagrangian with respect to S is finite if and only if || @||, < u (Lin et al., 2014). Then the minimum value of the S-term is
0 and we can eliminate them to get reduced form of Lagrangian:
2 P

+_
2 2

Vii =V, Vo=V,

P — — = S — P 2 = —
P(V;,V,0,a) = <G,-,1.v,-,1> + <Gj,2. v,-\2> +2 (Vi V).

To find the dual function, we minimize fﬂ(vﬂ,ng. a) over Vj1,Vja:

—i&— Gy + pV, _ a— G+ pV.
= .1 / gl and ‘{112 _ 2 1 f) 1:2' (16)
P 14

<

Substitute these back to (15), we obtain the dual problem
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min —( @, @
a
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’ 2

, such that [|a||, < u.

Leth = ((Gj1 — Gj2) — p(V; 1= V?Q)) /2. The above problem has closed form solution: if “EHz < pthena* = —h, otherwise &" = f,u-” ;‘H . Solution of Vj;

and V;» can be calculated by plugging @ into (16).
Solution to Subproblem 2. The second subproblem involves solving

n K K
) . ; = = oo > () o Sy
min > | ¥-Dd =Y XUV} +7 Y (V) + (%, 7 +’§\| 7 — 72 a”n
i=1 k=1 k=1

To ease notations, we let Y/ — D d'—Y' and X} Uy—X. The spatial penalty can be written in matrix form, #(Vy) = [ ViC Hi.The problem becomes

n K K
H ( 1 X7 X7 q > U = o
min SNY =D X Vil +7 Y 1 VCllp + ( %2, 7 +’E | 77— 773 (18)
=1 k=1 k=1

This problem is a quadratic programming with positive definite Hessian. To solve this problem efficiently, we use the conjugate gradient method
implemented in MATLAB.

Appendix C. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.neuroimage.2017.12.032.
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