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SUMMARY

The human brain is a directional network system, in which brain regions are network nodes and the influ-
ence exerted by one region on another is a network edge. We refer to this directional information flow from
one region to another as directional connectivity. Seizures arise from an epileptic directional network;
abnormal neuronal activities start from a seizure onset zone and propagate via a network to otherwise
healthy brain regions. As such, effective epilepsy diagnosis and treatment require accurate identification of
directional connections among regions, i.e., mapping of epileptic patients’brain networks. This article aims
to understand the epileptic brain network using intracranial electroencephalographic data—recordings of
epileptic patients’ brain activities in many regions. The most popular models for directional connectiv-
ity use ordinary differential equations (ODE). However, ODE models are sensitive to data noise and
computationally costly. To address these issues, we propose a high-dimensional state-space multivariate
autoregression (SSMAR) model for the brain’s directional connectivity. Different from standard multi-
variate autoregression and SSMAR models, the proposed SSMAR features a cluster structure, where the
brain network consists of several clusters of densely connected brain regions. We develop an expectation–
maximization algorithm to estimate the proposed model and use it to map the interregional networks of
epileptic patients in different seizure stages. Our method reveals the evolution of brain networks during
seizure development.

Keywords: Brain networks; Directional connectivity; Dynamic system; EM algorithm.

1. INTRODUCTION

The human brain is a network system consisting of many interacting regions; brain regions are network
nodes, and the directional effect exerted by one region over another corresponds to a directional network
edge in the brain network. This directional information passed by one region to another is referred to as
directional connectivity.

Understanding how the interregional network is related to the functions and dysfunctions of the brain
is one of the central goals of neuroscience. We here focus on mapping the normal and abnormal brain
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614 H. LI AND OTHERS

networks of epileptic patients using intracranial electroencephalography (iEEG) recordings of their brain
activities. Note that directional connectivity is also called effective connectivity (Friston, 2011), which is
typically examined under the dynamical causal model (DCM) based on functional magnetic resonance
imaging (fMRI) and scalp electroencephalography (EEG) data (Friston and others, 2003; Friston, 2009).
To emphasize the different data and model used in this article, we call the connectivity under our study
directional connectivity.

In a typical focal seizure, abnormal and excessive neural activity starts from the seizure onset zone (SOZ)
and propagates to otherwise healthy brain regions.As such, seizures are a directional network phenomenon.
Understanding the epileptic brain network is critical to the diagnosis and the treatment of patients who
suffer from the inability to control seizures with medication (Devinsky, 1999), also known as drug-resistant
epilepsy (DRE). In the epilepsy diagnosis of patients with DRE, neurosurgeons implant electrodes either
on the cortex or via depth electrodes to monitor the activities of many moderately small brain regions—a
technique called iEEG. The recorded data are multivariate time-series of voltage waveforms, which often
exceed 50 channels. Figure 1(a) shows the electrode placement on the left hemisphere of a patient who
underwent iEEG recordings in evaluation for epilepsy surgery. Figure 1(b) shows a short 5-s segment of
the patient’s iEEG recordings in two regions/channels.

In contrast to noninvasive brain activity measurements, e.g., fMRI, EEG, and magnetoencephalography
(MEG), each iEEG electrode directly records the neuronal activity in one small region (10 mm in diameter)
at a millisecond scale, and iEEG data possess several nice properties, including high spatial resolution,
high temporal resolution, and a much stronger signal-to-noise ratio (SNR, Cervenka and others, 2013)
than EEG and fMRI data.

Previous studies of iEEG data developed quantitative methods to examine epileptic patients’ brain
networks (Bartolomei and others, 2010; David and others, 2011; Andrzejak and others, 2012). The most
popular methods are information-theoretic measures of directional connectivity (Burns and others, 2014;
Kramer and others, 2012). However, these methods typically focus on pairwise relationships between
regions and cannot delineate the entire pathway of signal transfer that can transit through more than two
regions.

Since the brain is a dynamic system on the time domain, a more effective approach to investigating
the brain is to build a dynamic-system model for characterizing simultaneous directional interactions
among all the regions under study on the time domain and to estimate the model parameters that quantify
directional connectivity. This approach can provide a comprehensive picture of the relationship among
all the regions and capture the mechanism of the brain. The most popular dynamic-system models for the
brain use ordinary differential equations (ODE) to characterize directional connectivity. These include
DCM (Daunizeau and others, 2011; David and others, 2006) and neural mass models (NMM, Wendling
and others, 2002) based on fMRI and EEG data. However, DCMs and NMMs are mostly for directional
connectivity among only a few brain regions, that is, for low-dimensional brain networks.

For high-dimensional systems, Chen and Wu (2008), Wu and others (2014), Zhang and others (2015,
2017, 2019) proposed to use linear ODEs to approximate complex interactions among many system
components. Despite their simplicity, these high-dimensional ODE models share several other issues
with their complex counterparts. First, as deterministic models, ODE models fail to take into account the
potential discrepancy between the assumed model and the underlying true dynamical system. Second, the
estimates of ODE parameters are sensitive to data noise, because the estimates of derivatives of the state
functions of ODEs are highly sensitive to a low data-sampling rate and data noise (Ramsay, 2006). Third,
ODE model estimation is computationally expensive.

To address the limitations of ODE models, we propose a state-space multivariate auto-regression
(MAR)-based model (SSMAR) for the directional brain network. What separates our model from a
standard MAR and SSMAR models (Korzeniewska and others, 2011, 2008; Goebel and others, 2003)
is 2-fold. First, our model, as an approximation of a high-dimensional dynamic system within a short

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/22/3/613/5687932 by guest on 18 Septem

ber 2022



Directional brain networks 615

0 1 2 3 4 5
Time (s)

1

2

(a) (b)

Fig. 1. (a) The iEEG electrode placement on the left hemisphere of an epileptic patient under study. (b) Two
channels/electrodes’ 5-second iEEG time series.

period of time, does not require stationarity. Second, the proposed high-dimensional model uses a large
number of parameters to quantify directional connectivity among many regions. To increase estimation
efficiency, our model considers sparse networks, especially those in a cluster structure (Milo and others,
2004; Newman, 2006), where subsets of regions have particularly dense connections between themselves,
but not to others. The cluster structure fits nicely with the functional specialization of the human brain
(Sporns, 2011, pp. 71); the brain areas that are specialized in the same or similar function tend to densely
connect with each other to form a cluster (Sporns, 2013). We propose a Potts model (Potts, 1952) for the
MAR parameters to incorporate the cluster structure. The ensuing new state-space MAR model with the
Potts Model is referred to as the modular state-space multivariate auto-regressive model (MSSMAR).

To estimate the MSSMAR, we propose a penalized log-likelihood criterion, which uses a penalty
converted from the Potts model to regularize the size of clusters and to impose the sparsity on the network
result. Then, we develop an expectation–maximization (EM) algorithm to optimize the criterion, identify
clusters of connected regions, and map brain networks. The EM algorithm uses the Kalman filter and
smoother in the expectation step and thus, is computationally fast. We show that the proposed model is
more effective than existing methods in identifying connected regions even for data generated from the
models different from the assumed SSMAR (Section 4). In summary, this article builds a new dynamic-
system model for the brain network and develops a computationally efficient estimation method to identify
connected brain regions. Our new method fits well with the brain’s functional organization and is robust
to various deviations from the assumed model.

The rest of the article is organized as follows. In Section 2, we introduce a general SSMAR and propose
the MSSMAR for iEEG data. In Section 3, we propose a log-likelihood-based criterion with the Potts
penalty and develop an EM algorithm to maximize the criterion for estimating the MSSMAR. We also
discuss a penalty parameter selection method. In Section 4, we use simulation examples to show that the
MSSMAR is robust to various violations of model assumptions and outperforms existing popular network
methods. In Section 5, we apply the MSSMAR to iEEG data of an epileptic patient and reveal changes
from the normal brain network to abnormal one as the seizure develops. Section 6 discusses future research
directions.

2. A DYNAMIC MODEL FOR IEEG DATA

2.1. The state-space MAR model

Let y(t) = (y1(t), . . . , yd(t))′ be the observed iEEG measurements of d brain regions’ neuronal activities
at time t for t = 1, . . . , T , where T is the number of iEEG time points to be analyzed. Since brain regions
are interacting with each other through neuron firing, the model for directional connectivity should be
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616 H. LI AND OTHERS

constructed at the neuronal states of the regions. We use x(t) = (x1(t), . . . , xd(t))′ to represent the d brain
regions’ neuronal state functions at time t.

Motivated by the DCM (Friston and others, 2003), which is a state-space model, we propose a state-
space model for y(t). The observation model, i.e., the state model, links y(t) to x(t), and the space model
for x(t) characterizes the directional connectivity among d regions.

Since each iEEG electrode directly records one region’s neuronal activity with a high spatial resolution
and a high SNR, we propose a simple observation model for y(t):

yi(t) = ci · xi(t) + εi(t), t = 1, . . . , T , (2.1)

where ci is an unknown constant, and εi(t) is a data measurement error with mean zero.
The most common discrete-time dynamic system model in statistics is the multivariate auto-regressive

model (MAR). We propose to use the simplest first-order MAR to characterize the directional connectivity
among d regions at the neuronal state:

xi(t) =
d∑

j=1

Aij · xj(t − 1) + ηi(t), (2.2)

where Aij quantifies the directional connection from region j to region i, and ηi(t) is a model error with
mean zero. The model error characterizes the variation of xi(t) that cannot be explained by the model.

The observation model (2.1) and the state model (2.2) together are the proposed state-space MAR
(SSMAR) for the brain’s directional connectivity. The SSMAR with the separate data measurement error
and model error has the model flexibility to approximate different network systems as well as robustness
to violations of model assumptions.

We use the first-order SSMAR rather than higher-order ones for two reasons. First, due to the current
limited understanding of the human brain, it is impossible to build a high-dimensional model that can
explain all the complex temporal activities of many brain regions. Instead, our goal is to identify connected
brain regions through detecting the existence of temporal dependence among regions’ time series data.
Though the first-order MAR may not capture all the temporal dependence among regions, it is effective to
capture the major dependence, especially within a short time segment. Second, for the high-dimensional
network under study, the first-order MAR uses much fewer parameters than its higher-order counterparts
to characterize directional connectivity, which brings estimation efficiency.

Because ci in (2.1) and the variance of ηi(t) are not uniquely defined, we let (c1, . . . , cd) be unknown and
assume that the variances ofηi(t)s all equal 1 to avoid the identifiability issue.We also assume independence
among η(t) = (η1(t), . . . , ηd(t))′, i.e., η(t) ∼ MVN(0, I), where MVN stands for a multivariate normal,
and I is the identity matrix. The independence assumption is to keep the proposed model parsimonious.
Again, the goal here is to develop a model that can effectively detect existence of temporal dependence
among regions’ iEEG data instead of capturing all the spatial and temporal variation of the data. For
similar reasons, we assume that the initiate state x(0) ∼ MVN(μ0, I) and the model measurement error
ε(t) = (ε1(t), . . . , εd(t))′ ∼ MVN(0, R), where R is a d by d diagonal variance–covariance matrix.

2.2. The modular state-space MAR model

Under the SSMAR, evaluating directional connectivity among d regions is equivalent to estimating d2

parameters Aijs. For a large d, conventional estimates of the many model parameters have large variances.
To increase estimation efficiency, we assume sparsity for the model parameters that denote directional
connectivity among regions. However, simple sparsity does not solve the problem. This is because sparse
networks can have many different forms, most of which do not correctly represent the brain’s functional
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organization. For example, typical L1 regularization-induced sparsity (Basu and Michailidis, 2015; Davis
and others, 2016; Nicholson and others, 2017) implies that every region has very few connections with
other regions. However, this network does not fit the brain’s functional organization in which regions
performing the same or similar functions tend to densely connect with each other.

We assume that the underlying network has a cluster structure for three reasons. First, the cluster
structure, consisting of several separate clusters of densely connected regions, fits well with the brain’s
functional specialization: the brain regions specialized in the same or related function tend to be closely
connected. For example, regions responsive to an auditory stimulus are densely connected to form a
cluster (Cheung and others, 2016). Second, the existing literature on brain networks has widely reported
the cluster structure (Newman, 2006; Sporns, 2011). Third, identifying the cluster that includes the SOZ
will be useful for neurologists to evaluate the effect of seizures on brain functions because intuitively,
regions in the same cluster as the SOZ are those affected by the SOZ’s activities most. Considering all
these reasons, we propose to incorporate the cluster structure into the SSMAR.

We introduce cluster labels for d brain regions. Let mi be region i’s cluster label, which takes an integer
value between 1 and d. The new state model is

xi(t) =
d∑

j=1

δ(mi, mj) · Aij · xj(t − 1) + ηi(t), (2.3)

where the Kronecker delta function, δ(mi, mj), equals 1 if mi = mj and 0 otherwise.
We refer to equations (2.1) and (2.3) as the modular state-space multivariate autoregressive model

(MSSMAR). Under the MSSMAR, we focus on identifying the clusters of closely connected regions.

3. MODEL ESTIMATION

We use Y to denote all the observed time-series data {y(1), . . . , y(T )} and use X to denote the underlying
state functions {x(0), x(1), . . . , x(T )} of d regions at all the time points. Let A be a d × d matrix with
entries Aij, i, j = 1, . . . , d, m = (m1, . . . , md)

′, and c = (c1, . . . , cd)
′. The parameters to be estimated in

the MSSMAR are � = {θ , m}, where θ = {A, c, R, μ0}.

3.1. Optimization function with the Potts penalty

We propose to estimate � by maximizing a penalized log-likelihood of Y:

PL(�|Y) = log(P(Y|�)) − λ ·
d∑

i=1

d∑
j=1

δ(mi, mj), (3.1)

where λ is a positive constant and

P(Y|�) ∝
∫

P(x(0)|�)

T∏
t=1

P(x(t)|x(t − 1), �)P(y(t)|x(t), �) dX.

The penalty −λ · ∑d
i=1

∑d
j=1 δ(mi, mj) is motivated from the Potts model (Potts, 1952) for the cluster

labels m = {m1, . . . , md}:

P(m) ∝ exp{−λ ·
d∑

i=1

d∑
j=1

δ(mi, mj)}. (3.2)
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618 H. LI AND OTHERS

The Potts model (3.2) assigns a small weight to the cluster structure containing large clusters and many
connected brain regions. We take the logarithm of the Potts model and use it as a penalty to regularize the
size of clusters and to induce a sparse network result.

3.2. The EM algorithm

The most popular approach to finding the maximum likelihood estimate (MLE) for the SSMAR (2.1) and
(2.2) is the EM algorithm (Holmes and others, 2012), because the conditional distribution of X given �

is multivariate normal, and it is straightforward to treat X as missing data in the EM algorithm. Given this,
we develop an EM algorithm to find the maximizer for PL(�|Y).

The EM algorithm iterates between the following two steps.

Expectation: R(�|�s−1, Y) ≡ EX|�s−1,Y log P(X, Y|�), (3.3)

Maximization: �s = argmax�Q(�|�s−1, Y), (3.4)

where Q(�|�s−1, Y) = R(�|�s−1) − λ · ∑d
i=1

∑d
j=1 δ(mi, mj).

The conditional distribution of X given Y and � is a multivariate normal, so we can use the Kalman
filter (Kalman, 1960) and smoother to solve the expectation step (3.3). See details in the Supplementary
material available at Biostatistics online.

The maximization in (3.4) is an non-deterministic polynomial-time (NP) hard problem because the Potts
penalty is an L0 penalty on the number of nonzero parameters. To address this computational difficulty in
finding the maximizer of Q(�|�s−1, Y), we use a generalized EM (GEM) algorithm (Neal and Hinton,
1998) to solve the maximization step. The GEM ensures that Q(�s|�s−1) > Q(�s−1|�s−1) (Little and
Rubin, 2019). Thus, the optimization target function PL(�|Y) increases after every iteration of the GEM
algorithm, and the algorithm always converges. Specifically, instead of finding the optimal updates of all
regions’ cluster labels that maximize Q(�|�s−1, Y) (which is an NP hard problem), we update the cluster
label of one region only in each maximization step (which is computationally feasible). The details are
given below.

Let θ s−1 denote the estimate of θ after the (s − 1)th iteration and ms−1 = {ms−1
1 , . . . , ms−1

d }, the cluster
labels of d regions at step s − 1. We let m0 = {1, . . . , d}, c0 = {1, . . . , 1}, μ0

0 = Y, R0 = I, and A0 be the
estimates of A by directly fitting a simple first-order MAR to the data. For each region i = 1, . . . , d, let
ms−1

−i = {ms−1
1 , . . ., ms−1

i−1 , ms−1
i+1 , . . . , ms−1

d }. The maximization at the sth step of the GEM is as follows.

A Repeat the following procedure for every region i.
A.1 Calculate maxmi ,θ Q(mi, θ , ms−1

−i |�s−1, Y) and denote the ensuing value by H s
i and the

ensuing maximizer (mi, θ) by (zs
i , θ̃

s

i ).

B Select the region l whose associated H s
l = max(H s

1 , . . . , H s
d).

C Let ms
−l = ms−1

−l , ms
l = zs

l , and θ s = θ̃
s

l . That is, in the sth maximization step, the optimal one-
region cluster-label update is for region l. Then the other d − 1 regions’ cluster labels ms

−l at the
sth step are the same as those in the previous step, and region l’s cluster label ms

i and the parameter
values θ s equal to (zs

l , θ̃
s

l ) that maximize Q(mi, θ , ms−1
−i |�s−1, Y) given ms−1

−i from the previous step.

In the step A.1, to obtain the maximized value H s
i , we calculate maxθ Q(θ , mi = z, ms−1

−i |�s−1, Y) for
every possible value z of mi (including for z = ms−1

i ). This calculation is computationally feasible because
mi can take at most d − 1 different values, and maxθ Q(θ , m|�s−1, Y) has an analytical solution given m.
Then H s

i = maxz maxθ Q(θ , mi = z, ms−1
−i |�s−1, Y) and zs

i = argmaxz maxθ Q(θ , mi = z, ms−1
−i |�s−1, Y).
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Because the maximization step includes the evaluation of maxθ Q(θ , ms−1|�s−1, Y) (which is
no smaller than Q(θ s−1, ms−1|�s−1, Y)), the chosen θ s and ms must satisfy Q(θ s, ms|�s−1, Y) ≥
Q(θ s−1, ms−1|�s−1, Y).As such, the new parameters θ s and ms increase the optimization function PL(�|Y)

(Gelman and others, 2013; Little and Rubin, 2019).
Though mi is not identifiable, the regions in the same cluster are unique. The proposed algorithm does

not experience the cluster label switch over iterations. This is because the maximization step guarantees
that the value of the objective function monotonically increases, while the cluster label switch does not
increase the optimization function.

3.3. Penalty parameter selection

The penalty parameter λ regularizes the size of the clusters in the brain network and determines the
sparsity level of the network results. We propose to use the Akaike information criterion (AIC) to select λ.
However, for the proposed high-dimensional model with many free parameters, AIC tends to pick small
λs that lead to many nonzero model parameters, that is, AIC tends to overfit (Claeskens and Hjort, 2008).
To address this issue, we first exclude λs that result in networks with large clusters, as explained in detail
below.

We first determine the upper bound 2U for λ, where U is a positive integer. We apply the developed
EM algorithm with each of λ ∈ {2u, u = 1, 2, ...} to the data Y. The smallest λ ∈ {2u, u = 1, 2, ...} that
leads to a network with d clusters is the upper bound. For each candidate λ ∈ {0, 0.1, 0.2, . . . , 2U } (or
{0, 0.01, 0.02, . . . , 2U } if U = 1), we apply the developed EM algorithm to Y and obtain the ensuing
network results.

We exclude λs that lead to networks with too large clusters or too many small clusters, specifically,
networks whose largest cluster contains more than 50% or fewer than 10% of d regions. We found that if
the largest cluster contains more than 50% of regions, more than 25% of model parameters are nonzero,
resulting in non-sparse networks. If the largest cluster contains fewer than 10% of d regions, the ensuing
network has too many small clusters and is difficult to interpret scientifically.

We use the AIC to select λ among the rest of the parameters. The AIC is defined as

AIC(λ) = −2 log
(

P(Y|�̂)
)

+ 2
∑

1≤i<j≤d

δ(m̂i, m̂j),

where �̂ is the output of the EM algorithm. Since the first screening step excludes most λs that very
likely lead to overfitting, the AIC can select λ with a low false positive rate (FPR), as demonstrated in the
simulation study. Moreover, since it is straightforward to evaluate the AIC at the end of the EM algorithm,
the second step of AIC-based penalty parameter selection does not require additional computation for
each candidate λ. In summary, the proposed penalty selection procedure is computationally fast and easy
to implement.

4. SIMULATION STUDY

4.1. Comparison with ODE models

The most popular dynamic system models for the brain’s directional connectivity use ODEs to
describe the biophysical interactions among usually only a few brain regions (Friston and others,
2003). Zhang and others (2019) proposed a high-dimensional second-order ODE model to character-
ize directional connectivity of a high-dimensional brain network and to simultaneously accommodate
brain regions’ oscillatory activities, a rhythmic or repetitive neural activity involved in many brain
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(a) (b) (c)

(d) (e) (f)

Fig. 2. (a) Simulated x(t) of three regions in three different clusters. (b) The true network of the simulated system.
(c) The estimated network for 200 Hz data. Nodes of the same shape (square, triangle, or diamond) correspond to the
regions identified to be in the same cluster. Each line indicates one pair of directionally connected regions. (d)–(f)
ROC curves of identifying connected regions by the proposed MSSMAR and an MODDM-based method for data
with temporal resolutions 800 Hz, 400 Hz, and 200 Hz, respectively.

functions (Fell and Axmacher, 2011). The ODE model is

d2xi(t)

dt2
=

d∑
j=1

δ(mi, mj) · Aij · xj(t) + Di + Gi
dxi(t)

dt
. (4.1)

The above model is referred to as the modular oscillatory dynamic directional model (MODDM).
We use the data generated from the above ODE model to examine the robustness and effectiveness

of our method in identifying connected regions and compare the ensuing network results with those of
ODE approaches. We generated d = 60 state functions x(t) from the model (4.1) using discretization
methods (Campbell, 2007; Cao and others, 2012; Xue and others, 2010). The simulated system has three
clusters, each consisting of 20 pairwise connected regions. The simulated x(t), shown in Figure 2(a), have
oscillatory patterns similar to the iEEG time series in Figure 1(b). Figure 2(b) shows the true network
among the 60 regions. Nodes of the same shape (square, triangle, or diamond) correspond to the regions
in the same cluster. Each line indicates the existence of a directional connection between the two regions
at the two ends of the line.

We generated measurement errors εi(t) from the following model:

ε(t) = 0.5ε(t − 1) + ζ (t) and ζ (t)
i.i.d∼ MVN(0, D

1
2 �1D

1
2 ), (4.2)

where �1 is a block diagonal matrix with each block corresponding to one cluster. We let all the diagonal
entries of �1 be 1 and sampled the off-diagonal entries in each block independently from Unif(0, 0.5).
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Directional brain networks 621

We chose 0.5 to be the upper bound for off-diagonal entries such that �1 is strictly positive definite. The
matrix D is a diagonal matrix whose diagonal entries were chosen such that the SNR of yi(t), defined as
var(xi(t))/var(εi(t)), is 10, mimicking the strong SNR of the real data (Zhang and others, 2015). As such,
ε(t) is spatially (among regions) and temporally correlated.

The sum of xi(t) and εi(t) yields yi(t). We produced y(t) of three different temporal resolutions, 800 Hz
(800 equally spaced time points observed each second), 400 Hz, and 200 Hz, and applied the MSSMAR
to the three sets of time series with three different frequencies independently.

We applied the proposed MSSMAR to y(t) using different penalty parameters λ. With each penalty
parameter, we identified connected brain regions and calculated the ensuing true positive rate (TPR) and
FPR. Figures 2(d–f) show the ROC curves, i.e., pairs of TPRs vs. FPRs, of network edge selection (i.e.,
selection of connected regions) by the MSSMAR for data of frequencies 800 Hz, 400 Hz, and 200 Hz,
respectively. We also found that the network results by using the penalty parameter λ selected by the AIC
were almost identical to the true network. Figure 2(c) shows the network result for the 200-Hz data, which
has a TPR of 93.7% and FPR of 3.3%.

For comparison, we examined the ROC curves (dotted lines) of a method directly based on the assumed
MODDM (4.1) (Zhang and others, 2019). The results show that the ODE-based method is sensitive to
data noise and most effective for high-frequency data. In contrast, the proposed MSSMAR is robust to
data noise and low data-sampling rates and outperforms the ODE-based method with much higher TPRs
given the same FPRs, even for data generated from the assumed ODE models.

4.2. Comparison with high-order SSMARs

In multivariate time series analysis, higher-order SSMARs are usually more popular than the first-order
SSMAR, as the former can better capture complex spatial and temporal dependence among multivariate
time series data. We claim that even for time series from high-order SSMARs, the proposed MSSMAR
is still efficient in detecting connected brain regions. To demonstrate this, we simulated data from the
following third-order SSMAR.

xi(t) =
d∑

j=1

A1,ij · xj(t − 1) +
d∑

j=1

A2,ij · xj(t − 2) +
d∑

j=1

A3,ij · xj(t − 3) + ηi(t),

yi(t) = xi(t) + εi(t),

where d = 50. Region j has a directional effect over region i if at least one of A1,ij, A2,ij, and A3,ij is nonzero.
The simulated system consists of three clusters of size 15, 15, and 20 and has both within-cluster and
between-cluster connections. All the regions in the same cluster are pairwise connected, and the between-
cluster connections are much sparser than within-cluster connections. Figure 3(a) shows the simulated
network of the system.

We simulated the state model errors η(t) = (η1(t), . . . , ηd(t))′ from the model

η(t) = 0.5η(t − 1) + δ(t) and δ(t)
i.i.d∼ MNV(0, �2), (4.3)

where �2 is created in the same way as �1. We generated the observation errors ε(t) from the model (4.2)
and set the SNR to be 10. As such, both the state model errors η(t) and data measurement errors ε(t) are
spatially (among regions) and temporally correlated.

We compare the MSSMAR with four existing network methods, including the MAR with an L1 penalty
(MAR(L1)) by using the R package BigVAR, partial directed coherence (PDC) (Baccalá and Sameshima,
2001), spectral synchrony (Euán and others, 2018), and graphical Lasso (Glasso) (Friedman and others,
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(a) (b) (c)

Fig. 3. (a) The true network of the generated system. (b) The estimated network by the MSSMAR. Nodes of the same
shape (square, triangle, or diamond) correspond to the regions identified to be in the same cluster. Each line indicates
one pair of connected regions. (c) ROC curves of the proposed method and competing methods, including the MAR
with an L1 penalty (MAR(L1)), partial directed coherence (PDC), spectral synchrony, and graphical Lasso (Glasso).

2014; Witten and others, 2011). We used different penalty parameters or thresholds for the five methods,
calculated the ensuing TPRs and FPRs, and plotted the ROC curves of the five methods in Figure 3(c).
Despite that the assumed MSSMAR deviates from the data generating model both in terms of the rela-
tionship among regions and the distributions of error terms, the MSSMAR achieves the highest accuracy
in selecting network edges and outperforms all the other four competing methods.

Figure 3(a) shows the estimated network by the MSSMAR with the selected penalty parameter. The
estimated network has a TPR of 85.8% and FPR of 6.7%. Three brain regions that have between-cluster
connections were classified into a wrong cluster. Nevertheless, the MSSMAR correctly clustered the other
47 regions. In summary, due to distinct densities of within-cluster and between-cluster connections, the
proposed MSSMAR can identify clusters and connected regions with high accuracy.

5. ANALYSIS OF EPILEPTIC PATIENT’S IEEG DATA

We used the proposed MSSMAR to examine brain networks of an epileptic patient who underwent
iEEG monitoring for epilepsy surgery evaluation. Figure 1(a) shows the electrode placement on the left
hemisphere of the patient. The iEEG recordings captured the patient’s brain activities at three seizures.
Through visually examining the iEEG data around the seizure onset time, EEG experts determined that
channel/region 37 (G37) of the 8 × 8 grid was the SOZ, the region where seizures start and spread to
other regions. Channels 63 and 64, as the reference electrodes, were removed from the analysis. Thus, we
evaluated connectivity among the rest 62 regions.

To understand the patient’s network changes around the seizure onset, we focused on four time periods:
26–50 s before seizure onset, 1–25 s before seizure onset, 1–25 s after seizure onset, and 26–50 s after
seizure onset. Following the common practice in the literature (Burns and others, 2014), we applied our
developed method to each 1-s iEEG segment of 1000 time points (the temporal resolution is 1000 Hz)
independently. This approach ensures effective approximation of the brain system by the MSSMAR. In
total, we analyzed 300 1-s segments (4 periods × 25 s × 3 seizures).

We used the first 1-s segment in each period to select the penalty parameter for analyzing 75 segments
in that period. For each 1-s segment, we obtained a 62 × 62 connectivity matrix, denoted by M. Its (i, j)th
entry Mij = 1 indicates regions i and j detected to be in the same cluster; and 0 otherwise. For each period,
by analyzing 75 1-s segments separately (25 s × 3 seizures), we obtained 75 connectivity matrices and
calculated the average of 75 Mijs for each pair of regions i and j during that period. We use Bij to denote
the average and refer to it as the clustering probability between regions i and j.
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(a) (b) (c) (d)

Fig. 4. Brain networks for four periods. t = 0 is the starting time of seizure onset. Each gray network edge indicates
a pair of brain regions with the top 5% clustering probability. Nodes of the same shape (square, triangle, up-pointing
triangle, down-pointing triangle, or diamond) correspond to the regions identified to be in the same cluster. Circles
correspond to the regions that have no connection with the other regions. (a) t ∈ [−50, −25] s, (b) t ∈ [−25, 0] s, (c)
t ∈ [0, 25] s, and (d) t ∈ [25, 50] s.

We identify regions to be in the same cluster through giving a threshold to Bijs. For example, if Bij and
Bjk are above the threshold, regions i, j, and k are deemed in the same cluster regardless whether Bik is
above the threshold or not. We select regions with top 5% clustering probabilities. Figures 4(a–d) show
the network results by the proposed method for the four periods. An edge indicates that the clustering
probability of the two regions in the same cluster is above the threshold. Nodes of the same shape of either
square, up-pointing triangle, down-pointing triangle, and diamond correspond to the regions identified to
be in the same cluster. Nodes in circles correspond to the regions that have no connection with the other
regions.

We found that the epileptic brain network underwent dramatic changes at the time of seizure initiation
and propagation. The networks for the two pre-seizure periods were similar (Figures 4(a) and (b)), indi-
cating that the subject’s interregional network was stable before seizure onset. However, once seizures
started, more regions became connected (Figure 4(c)). Addition continued as seizures further developed
(Figure 4(d)).

We identified several clusters. The regions in the same cluster tended to be in spatial proximity, even
though spatial proximity was never regularized in the estimation. This result is in line with existing
findings that spatially close small regions tend to have similar functions and thus, supports our approach
of imposing the cluster structure on the model parameters.

The SOZ (G37) mainly connected to its a few neighboring regions prior to seizure onset (Figures 4(a)
and (b)). The SOZ (G37) then became actively engaged in connections with many other regions when
seizures started (Figure 4(c)). As the seizure further developed, more and more regions fell into the same
cluster as the SOZ, as evidenced by the expansion of brain regions indicated by spade (Figure 4(d)).

In summary, the analysis results are in line with the literature of the focal seizures: abnormal brain
activities start from the SOZ and spread to other regions, resulting in excessively synchronous neuronal
activity of many regions or the whole brain (Kutsy and others, 1999). In addition, our method reveals brain
network changes during seizure initiation and propagation: as seizures develop, more and more regions
are affected by the activity from the SOZ.

For comparison, we mapped the patient’s brain networks in the periods right before and right after
the seizure onset by using existing network methods, including correlation (Figures 5(a) and (b)), cross-
correlation (Figures 5(c) and (d)) (Brazier and Casby, 1952; Kramer and others, 2009), MAR(L1) (Figures
5(e) and (f)), Glasso (Figures 5(g) and (h)), PDC (Figures 5(i) and (j)), and directed transfer function (DTF)
(Figures 5(k) and (l)) (Kaminski and Blinowska, 1991).All these methods failed to detect the brain network
changes at the seizure onset.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 5. Brain networks estimated using correlation, cross-correlation, MAR with an L1 penalty (MAR(L1)), graphical
Lasso (Glasso), partial directed coherence (PDC), and directed transfer function (DTF) methods. Each network edge
indicates a pair of regions identified to be connected by the competing methods. (a) Correlation pre-seizure, (b)
correlation seizure onset, (c) Cross-Corr. pre-seizure, (d) Cross-Corr. seizure onset, (e) MAR(L1) pre-seizure, (f)
MAR(L1) seizure onset, (g) Glasso pre-seizure, (h) Glasso onset, (i) PDC pre-seizure, (j) PDC seizure onset, (k) DTF
pre-seizure, and (l) DTF seizure onset.

6. DISCUSSION

Identifying connected brain regions and mapping brain networks are challenging because potential patterns
of brain networks are enormous. Moreover, the complex spatial–temporal relationship between many brain
regions’ activities is difficult to specify. To address these challenges, we propose to use a state-space first-
order MAR model to approximate the complex brain system and impose the cluster structure on the model
parameters to increase efficiency in identifying connected brain regions.

The proposed MSSMAR model is far from being a perfect model of an interregional network. Instead,
it is a working model for mapping brain networks of directional connectivity. The model is in clear contrast
with ODE models, which are built upon biophysical mechanisms. The MSSMAR model is robust to data
noise and low data-sampling rate. With the imposed cluster structure, the proposed method can effectively
identify connected regions, especially when information of the brain system under study is incomplete.

We propose to use AIC to select the penalty parameter λ rather than Bayesian information criterion
(BIC) because we found that BIC tends to pick large λ that results in overly sparse networks consisting of
many small clusters. We suppose this is because the standard BIC, based on the number of data points, d ·T ,
overestimates the amount of available data information. Since the multivariate time series data under study
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have complex spatial and temporal dependence among recorded regions, the available data information is
much less than that of d · T independent data points. To get around the difficulty of accurately evaluating
the amount of available data information, we use AIC to select λ.

We did not assume between-cluster connections in the proposed MSSMAR for two reasons. First,
the focus of this article is to identify clusters of strongly connected regions, especially the cluster that
includes the SOZ for the epilepsy diagnosis. Due to distinct densities of within-cluster and between-cluster
connections, our approach could detect clusters even when between-clusters connections exist. Second,
the iEEG data under study were from spatially close regions and the strong connections among them are
mainly within-cluster connections, which are strong and short-range in contrast to typically long-range
between-cluster connections.

Note that though many approaches such as stochastic blockmodels (Airoldi and others, 2008; Durante
and Dunson, 2014; Geng and others, 2018; Nowicki and Snijders, 2001) have been developed in the
literature to characterize both within- and between-cluster connections and to identify clusters, these
methods are mainly for the networks whose edges are directly observed. In contrast, we here aim to
infer the network edges and clusters based on time series measurements of activities of network nodes.
Extending the current model to allow for between-cluster connections will lead to a significantly more
complex model and requires a new estimation method, which is beyond the scope of the current article.
We will address this topic in future research.

SOFTWARE

Software in the form of MATLAB code is available from https://github.com/StatDeptZhang/Modular-state-
space-multivariate-autoregression.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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