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Estimation and inferences for the hemodynamic response functions (HRF) using multi-subject fMRI data are
considered. Within the context of the General Linear Model, two new nonparametric estimators for the HRF are
proposed. The first is a kernel-smoothed estimator, which is used to construct hypothesis tests on the entire HRF
curve, in contrast to only summaries of the curve as in most existing tests. To cope with the inherent large data
variance, we introduce a second approach which imposes Tikhonov regularization on the kernel-smoothed
estimator. An additional bias-correction step, which uses multi-subject averaged information, is introduced to
further improve efficiency and reduce the bias in estimation for individual HRFs. By utilizing the common
properties of brain activity shared across subjects, this is the main improvement over the standard methods
where each subject's data is usually analyzed independently. A fast algorithm is also developed to select the
optimal regularization and smoothing parameters. The proposed methods are compared with several existing
regularization methods through simulations. The methods are illustrated by an application to the fMRI data
collected under a psychology design employing the Monetary Incentive Delay (MID) task.
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Introduction

There is a vast literature in functional magnetic resonance imaging
(fMRI) data analysis on estimating the hemodynamic response function
(HRF) within the framework of the General Linear Model (GLM)
(Friston et al., 1995a, 1995b; Worsley and Friston, 1995). These
methods differ in their assumptions about the shape of the HRFs.
Standard parametric approaches assume a functional form for the HRF
with a number of free parameters, such as the canonical form of
mixtures of gamma functions (Friston et al., 1998; Glover, 1999;
Worsley et al., 2002), Poisson function (Friston et al., 1994), inverse
logit function (Lindquist and Wager, 2007), and radial basis functions
(Riera et al., 2004). Except for the model using the canonical form and
its derivatives, estimation for parametric models with even a moderate
number of parameters often relies on computationally-intensive
iterative methods (such as the Gauss–Newton method), which can
lead to unstable estimates when the algorithms do not converge (Liao,
et al., 2002). This paper alternatively focuses on nonparametric
approaches, which are flexible and usually fast to compute. Bai et al.
(2009) andWang et al. (2011) constructed nonparametric estimates of
the HRF in the frequency domain. Nonparametric methods in the time
domain mainly fall into two types: representing the HRF with a linear
ity of Virginia, Charlottesville,
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combination of functional bases (Aguirre et al., 1998; Vakorin et al.,
2007; Woolrich et al., 2004; Zarahn, 2002), or treating the HRF at every
unit time point as a free parameter (Dale, 1999; Lange et al., 1999). In
this paper we adopt the latter approach in the time domain to develop
nonparametric estimation and inferences for HRFs.

Since nonparametric methods for HRF estimation involvemany free
parameters and the HRF is generally believed to be smooth (Buxton et
al., 2004), smoothing techniques are often employed. Kernel smoothing
is a popular nonparametric statistical method for increasing temporal
continuity of functional estimates (Eubank, 1988; Härdle, 1990). It has
been used for temporal smoothing of fMRI time series (e.g., Friston et al.,
1994; Worsley and Friston, 1995), but has rarely been used for HRF
estimation. In this paper, we first introduce a kernel-smoothed HRF
estimator, based on which we construct hypothesis tests on the entire
HRF curve, in contrast to the common practice of testing only some
characteristics of the HRF.

Regularization is another increasingly popular technique used in
nonparametric estimation that allows smoothness constraints to be
imposed on the HRF estimates. One example is the smooth finite
impulse response method (SFIR, Glover, 1999; Goutte et al., 2000;
Ollinger et al., 2001), which exploits a regularization term to obtain
smooth estimates that satisfy a boundary condition. Another example is
given in Marrelec et al. (2001, 2003), where the HRF is represented by
orthogonal functional bases and a smoothness constraint is imposed
through regularizing the norm of its second order derivative. Similarly,
representing the HRF by spline bases, Vakorin et al. (2007) and Zhang
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et al. (2007) used Tikhonov regularization (Tikhonov and Arsenin,
1977). The estimator proposed by Casanova et al. (2008, 2009) combines
Tikhonov regularization and generalized cross validation (Wahba, 1990)
(referred to Tik-GCV hereafter), greatly reducing the computational
burden involved in parameter selection. Motivated by these develop-
ments, a second goal of this paper is to propose a new nonparametric
estimator that combines kernel smoothingwith Tikhonov regularization.
Distinct from previous methods, this approach controls the degree of
temporal smoothness and the norm of the estimates by two separate
parameters. This separation makes the estimator more adaptive to
different combinations of HRF temporal resolution and signal-to-noise
ratio (SNR).

In analyzing multi-subject fMRI data, many existing methods, both
parametric and nonparametric, estimate each subject's HRF indepen-
dently to account for its variability across subjects (Aguirre et al., 1998;
Handwerker et al., 2004).Whendata fromeach individual has a lowSNR,
utilizing the common characteristics of the HRFs shared across the
population may improve the estimation efficiency. Moreover, for such
data, though a strong scale of regularization is effective in stabilizing
estimates, it also introduces additional biases. Thus, bias correction can
be considered to improve over the regularized estimates (e.g., Zhang et
al., 2007). Assuming that, under the same stimulus and in the same brain
regions, the HRFs have similar functional shapes across subjects (Friston
et al., 1998; Handwerker et al., 2004), we propose to use sample-
averagedHRF estimates to conduct bias correction for the regularization-
based estimates. A fast algorithm is developed to select regularization
and smoothing parameters and to evaluate the new estimators. Through
simulations, the proposed bias-corrected estimator demonstrates signif-
icant improvement over the estimators without the bias-correction step.

The article is organized as follows. In the Materials and methods
section, we briefly review the GLM framework and propose the
nonparametric kernel-smoothed estimator for hypothesis testing on
the whole curve of the HRF. We then refine the estimator by adding
Tikhonov regularization and applying bias correction. Two fast
algorithms for parameter selection are also developed. The Results
section presents results from applying the proposed methods to both
simulated data and real fMRI data, and comparisons are drawn to
several existing methods. The Conclusions section concludes with a
discussion.

Materials and methods

The GLM

We conduct massive univariate analysis of fMRI data in the
context of the GLM. Since the same approach applies to each voxel,
the subscript for voxel is omitted here. Let yi(t) for t=1,⋯,T and i=1,
⋯,N be the fMRI time series for a pre-specified voxel of subject i,
where T is the total observation time and N is the number of subjects.
Suppose the design has K stimuli. Let vi,k(t) be the kth (k=1,⋯,K)
stimulus function for subject i with vi,k(t)=1 if the stimulus is
evoked at time t and 0 otherwise. The GLM represents the observed
fMRI time series as a convolution of the HRF and the stimuli:

yi tð Þ ¼ ∑K
k¼1∫m

0 hi;k uð Þvi;k t−uð Þduþ εi tð Þ, where hi,k is the HRF of the
pre-specified voxel in subject i under stimulus k, m is a known
positive constant beyond which the HRF equals zero, and εi(t) is an
identically-distributed error term. The blood oxygen level depen-
dent (BOLD) fMRI signal often contains a low-frequency drift due to
physiological noise or subject motion (Brosch et al., 2002; Luo and
Puthusserypady, 2008; Smith et al., 1999); this can be modeled by
adding a polynomial term of time t (Lindquist, 2008; Mattay et al.,
1996; Worsley et al., 2002) to the above GLM as

yi tð Þ ¼ d0;i þ d1;i⋅t þ d2;i⋅t
2 þ

XK

k¼1

∫m
0 hi;k uð Þvi;k t−uð Þduþ εi tð Þ; ð1Þ
where the drift parameters d0,i,d1,i, and d2,i are allowed to vary across
subjects.

Kernel-smoothed nonparametric estimator

We treat each HRF at every unit time as a free parameter. Let Δ be
the time unit representing the discretization of the HRF temporal
resolution. Since it is possible to have the temporal resolution of the
HRF shorter than that of the fMRI data (Casanova et al., 2008; Ciuciu
et al., 2003), Δ can be smaller than the repetition time unit (TR) of the
experimental design. For each subject i, let Yi=(yi(1),…,yi(T)) ' be
the observed fMRI time series. Denote the discretized values of the

HRF under stimulus k by βi,k=(βi,k(1),⋯,βi,k(m)) ', where βi;k tð Þ ¼
∫t⋅Δ

t−1ð Þ⋅Δ hi;k uð Þdu in a block design or βi,k(t)=hi,k(t ⋅Δ) in an event-
related design (Josephs et al., 1997). Let βi=(βi,1

' ,⋯,βi,K
' ) '. Denoting all

the coefficients (d0,i,d1,i,d2,i,βi′) ' by ηi, the GLM Eq. (1) can be written
in a matrix form as

Y i ¼ Xiηi þ εi; ð2Þ

where Xi is the design matrix corresponding to the time covariates and
the stimulus functions for subject i, and εi=(εi(1),⋯,εi(T)) ′∼N(0,σ i

2Σi)
with unknown variance σi

2 and correlation matrix Σi. Since hi,k(t) is
random across subjects, the coefficients βi are also random. As a result,
model (2) is a linear random-effect model. For each subject, we can
remove the drift term through ordinary least square (OLS) regression
and obtain an unbiased OLS estimate of βi, denoted by

β̂ i ¼ β̂ i;1 1ð Þ; ⋯; β̂ i;1 mð Þ; β̂ i;2 1ð Þ; ⋯; β̂ i;K mð Þ
� �′

. As noted in Goutte et al.

(2000), β̂ i usually has an artificial high-frequency noise due to the large
number of parameters under estimation and experimental designswith
interleaved stimuli and inter-stimulus intervals. This can be clearly seen
from the simulation example in Fig. 2(a). Therefore, smoothing
techniques are often employed to reduce the unnatural ruggedness of
the estimates.

Previous approaches have typically applied temporal smoothing
directly to yi(t) to increase the statistical power for detecting responsive
regions (e.g., Friston et al., 1994, 1995b;Worsley and Friston, 1995). The
HRFs are generally believed to be smooth (e.g., Buxton et al., 2004);
while smoothing the HRF estimated from the fMRI time series
guarantees the smoothness of the resulting curve, directly smooth-
ing the original fMRI times series does not, especially in complex
designs with multiple stimuli. Since our interest lies in estimating
the HRF and the degree of smoothness may vary across HRFs under
different stimuli, we choose to conduct kernel smoothing on the OLS
estimates β̂ i. Specifically, we propose to use the Nadaraya–Watson
kernel estimator:

~β i;k tð Þ ¼
Xtþl

u¼t−l

Wt;u⋅β̂ i;k uð Þ; with Wt;u ¼ f t−u
h

� �
=h

∑tþl
u¼t−l f t−u

h

� �
=h

: ð3Þ

Here h is a pre-specified bandwidth controlling the degree of
smoothing, f(t) is a given symmetric density function (kernel), and l is
a pre-specified constant giving an upper bound on the number of data
points used for the estimation. In this article, we let f(t) be a standard
Gaussian density and l=m. Existing results suggest that the choice of
these two values has only a small effect on the estimation (Eubank,
1988; Härdle, 1990). The choice of the key bandwidth parameter h is
elaborated in Algorithms for parameter selection section. The
underlying idea of kernel smoothing is to borrow information from
the neighboring data: the estimate ~β i;k tð Þ is a weighted average of the
neighboring OLS estimates and the weight Wt,u is negatively correlated
with the distance |u−t|. The boundary condition ofβi,k(t)=0 for tb0 and
t>m is imposed by setting β̂ i;k uð Þ ¼ 0 for ub1 and u>m in the estimator
(3). Letting β̂ i;k ¼ β̂ i;k 1ð Þ; ⋯; β̂ i;k mð Þ

� �0
and ~β i;k ¼ ~β i;k 1ð Þ; ⋯; ~β i;k mð Þ

� �0
,



Table 1
Summaries of the estimators in the Materials and methods section and the Results
section.

Estimator Description

β̂ The OLS estimates
~β The kernel-smoothed OLS estimator, used for hypothesis testing
~β
r
(Tik-Kern) The Tikhonov-regularized estimator based on ~β

~β
cor

(BTik-Kern) The bias-corrected Tik-Kern estimator, used for estimation
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the first estimator we propose is a kernel-smoothed estimator that
can be expressed as a matrix transformation of the OLS estimators as
follows:

~β i;k ¼ Bhβ̂ i;k and β̃i ¼ Ahβ̂ i; ð4Þ

where Bh is an m×m matrix such that Bh(t,u1)=Wt,u1
for u1,t=1,⋯,m,

Ah= IK⊗Bh with ⨂ denoting the Kronecker product, and IK is a K×K
identity matrix.

Tikhonov-regularized smoothed estimator with bias-correction

The above kernel smoothing procedure increases the temporal
continuity of HRF estimates. However, with the large number of free
parameters to be evaluated, large variation in the magnitude of ~β i;k tð Þ
across time may still persist. Tikhonov regularization (Tikhonov and
Arsenin, 1977) is a common statistical technique used to address ill-
posed inverse problems, and is effective in reducing the variation of
regression estimates. A Tikhonov-regularized estimate of the regression
coefficient ηi in model (2) is obtained through solving the following
optimization problem

min
ηi

‖Y i−Xiηi‖
2 þ ‖Γηi‖

2
; ð5Þ

for some suitably-chosen matrix Γ, where ∥·∥ is the L2 norm. The
minimizer η̂T

i of Eq. (5) is given by (X′iXi+Γ′Γ)−1X′iYi.
Different choices of Γ defines different Tikhonov-regularized

estimators. One choice of Г in the fMRI literature is the discrete second
derivative matrix, as adopted in Marrelec et al. (2003), and Casanova et
al. (2008, 2009). Another choice of Γ is the scalar matrix αIdim(ηi), where
Idim(ηi) is an identity matrix with the dimension of ηi. Solution from this
Γ is equivalent to that from a ridge regression, a special case of Tikhonov
regularization. Our choice of Γ is slightly modified from the above.
Specifically, the dimension of ηi in our application is 3+K×m, but
regularization is imposed only on the estimates of the subvector βi of ηi,
excluding the drift parameters ds. We let Γ ¼

ffiffiffi
λ

p
D, where D is a

(3+K×m)-by-(3+K×m) diagonal matrix whose first 3 diagonal
entries equal zero and the rest equal 1, and λ is a given positive
constant controlling the degree of regularization. Letting Rλ

i be the
lower (K×m)-by-(K×m) square sub-matrix of (X′iXi+λD)−1(X′iXi),

the Tikhonov-regularized estimator of βi corresponding to this Γ isRi
λβ̂ i

(detailed derivation and explanation is given in Appendix A). Since this

regularization does not impose any smoothness constraint, Ri
λβ̂ i can

still be rough. Therefore, we once again use kernel smoothing as in Eq.
(4) to increase its temporal continuity and define a new estimator:
~β r
i ¼ AhR

i
λβ̂ i, which we call the Tik-Kern estimator. Comparing to the

existing regularization methods that directly apply Tikhonov regular-
ization, such as SFIR and Tik-GCV, the Tik-Kern estimator ~β r

i separately
impose the constraints for regularization and for smoothing.

Tikhonov regularization and kernel smoothing together greatly
reduce the variances in estimating HRFs, but they can also lead to large
biases without further adjustment. This motivates us to propose an
additional bias-correction step to ~β r

i . It is easy to show that the bias of ~β r
i

equals [AhRλ
i − IK ⋅m]βi, depending on the underlying true βi. A close

approximation to βi for each i is usually unavailable in practice.
Intuitively, if the HRFs of sampled subjects for a given stimulus and a
fixed brain region have similar functional shapes, each βi,k should be
reasonably close to ∑N

i¼1βi;k=N (Henson et al., 2002; Liao et al., 2002).
As such, one can use a sample-averaged estimate to approximate βi in
the presence of multiple subjects. Specifically, building on top of ~β r , we
propose the following bias-corrected estimator ~βcor (hereafter referred
to as the BTik-Kern estimator):

~βcor
i ¼ ~βT

i − AhR
i
λ−IK⋅m

� �
~β0

; ð6Þ
where ~β0 ¼ Ah0∑N
i¼1β̂ i=N, and the initial smoothing bandwidth h0 is

1=
ffiffiffiffiffiffiffiffiffiffiffi
7=TR

p
(Goutte et al., 2000). Since h0 is relatively small, ~β0 usually

has small variance and bias. In our analysis, estimation of the HRFs will
all base on the BTik-Kern estimator instead of the Tik-Kern estimator.
Upon obtaining the estimates ~βcor , we extract the summary statistics of
the HRF, such as time to peak (TTP), width (W), and height (HR), using
procedures as described in Lindquist and Wager (2007) for further
analysis. The various estimators introduced above are summarized in
Table 1.

Kernel estimate-based hypothesis testing and confidence interval

We now use the proposed estimators to perform statistical in-
ferences for population-wide brain activity. First, we identify brain
voxels that are responsive to a specific stimulus. Next, we identify brain
voxels that function differently in response to different stimuli. We
formulate these two goals as two corresponding hypothesis tests for
each voxel: (1) H0 : E βi;k

� � ¼ μk for some given stimulus k, where the
expectation applies to all subjects, and μk is a pre-specified vector of
constants which is usually a zero vector; and (2)H0 : E βi;k

� � ¼ E βi;k0
� �

for k≠k′.
Distinct from the existing tests on a single aspect of the HRF (e.g.,

latency or magnitude), hypotheses (1) and (2) aim to detect any
deviation from the null hypothesized HRF on thewhole time domain, as
they involve the entire vector of the HRF. We choose to construct test
statistics based on the kernel-smoothed estimator ~β instead of the BTik-
Kern estimator ~βcor . This is because (1) E ~β i;k

� �
¼ 0 as long as

E ~β i;k

� �
¼ 0, and (2)E ~β i;k

� �
¼ E ~β i;k′

� �
as long asE βi;k

� � ¼ E βi;k′

� �
for

any fixed bandwidth h. However, this is not true for ~βcor , because
regularization renders bias dependent of all the HRFs in the model
under non-orthogonal designs (see Results section). Thus, tests
constructed using regularization-based estimators, including the SFIR
and Tik-GCV estimators, will have an erroneous type I error as shown in
the simulations later. Conceptually, the test statistics can be also

constructed directly based on the OLS estimates β̂ . However, since the
kernel-smoothed estimator ~β has a much smaller variance, test
statistics based on it will have a higher statistical power.

Due to the inhomogeneous variances across subjects, for the first

hypothesis, we use zi;k ¼ ~β i;k−Bhμk

� �
=σ̂ i, where σ̂ i is the OLS

estimate of σi, to construct the Hotelling's T-square test statistic:

Uk ¼ N�z′kΛ
−1
k �zk; ð7Þ

where �zk and Λk are the sample average and the sample variance–
covariance matrix of zi,k, respectively. Assuming the fMRI data for a
fixed voxel across different subjects are independent and identically
distributed (i.i.d.), under the null hypothesis, (N-m)Uk/(m(N-1))
follows an F distribution with degrees of freedom (m, N-m)
(Hotelling, 1931). The i.i.d. assumption may not exactly hold in fMRI
data; nevertheless, with large enough sample size N, the distribution
of (N-m)Uk/(m(N-1)) under the null is still expected to closely
approximate the F distribution. Then, given the significance level α,
the null is rejected if (N-m)Uk/(m(N-1)) is larger than 100(1-α)%
percentile of F(m, N-m). Similarly for the second hypothesis, let
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Zi
k;k′ ¼ ~β i;k−~β i;k0

� �
=σ̂ i, for i=1,⋯,N, and we use the following test

statistic

Qk;k′ ¼ N�Z′
k;k′Ω

−1
k;k

0 �Z′
k;k′ ; ð8Þ

where �Zk;k′ and Ωk,k′ are the sample average and variance–covariance
matrix of Zk,k′i . The null hypothesis is rejected at α level if (N−m)Qk,k′/
(m(N−1)) is larger than 100(1-α)% percentile of F(m, N-m).

Confidence intervals can also be constructed for the kernel
smoothed HRF estimates. From Eq. (4), it is easy to show that
V ~β i

� �
¼ σ2

i AhΨiA
′
h, where Ψi is the lower (K×m)-by-(K×m)

square sub-matrix of X′
iXi

� �−1
X′

iΣiXi X′
iXi

� �−1
. Here, Σi is esti-

mated based on the model assumption such as AR(1) or AR(2) for εi
(Worsley et al., 2002), and σi

2 is estimated by its OLS estimate
σ̂ 2

i .Let τi=(τ1,1i ,…τ1,mi ,…,τK,1i ,…,τK,mi ) ' be diag AhΨiA
′
h

� �
, where

diag(⋅) represents the diagonal vector of a square matrix. A 95%
confidence band for the individual i's and the population-averaged
HRF estimates are

~β i � 2σ̂ i
ffiffiffiffi
τi

p
; and

1
N

XN
i¼1

β̃i � 2
1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

σ̂
2
i τi;

vuut

respectively. Based on the variance matrix for the entire curve of
the HRFs for all stimuli, confidence intervals for the difference
between the HRFs corresponding to different stimuli can also be
constructed. Specifically, let ςi

k;k′ ¼ diag Sk;k′AhΨiA
′

h
S′k;k′

� �
, where

Sk,k′ is an m-by-K×m matrix, whose (l,(k-1)m+ l)th and (l, (k′−1)
m+ l)th entries equal 1 and −1 respectively for l=1,…,m, and the
rest of the entries equal zero. Then a 95% confidence band for the
difference between the kth and k′th sample-averaged HRFs is given
by

1
N

XN
i¼1

β̃i;k−β̃i;k′

� �
� 2

1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

σ̂ 2
i ς

i
k;k0

vuut :

Algorithms for parameter selection

We propose two algorithms for selecting the optimal parameters
respectively for the kernel-smoothed estimator ~β i;k and the regularized
estimator ~βcor

i;k . Mean squared error (MSE) is typically used as the
criterion for parameter selection. The σi

2's are highly heteroscedastic
across subjects in real applications; therefore, it is appropriate toweight
each subject's fMRI data inversely proportional to σi

2 in population-
wide inferences: the weighted MSE (WMSE) is used as the criterion
instead. For the kernel-smoothed estimator ~β i;k, only bandwidth h
needs to be selected. Define the WMSE of ~β i;k as

WMSEk hð Þ ¼ 1
N

XN
i¼1

E‖~β i;k−βi;k‖
2
=σ2

i :

Since the true βi;k's are unknown, we approximate WMSEk(h) for
each candidate h and select the one thatminimizes theWMSE estimate.
We describe the technical derivations of WMSEk(h) in Appendix A and
present the selection algorithm below.

Algorithm 1. for selecting bandwidth h for the kernel-smoothed
estimator ~β .

1. Starting from an initial bandwidth h0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
7=TR

p
, for each stimulus

k calculate ~β i;k for i=,…,N, and their average, which is denoted by
~β0
⋅k.
2. For every subject i, calculate the OLS estimate σ̂ 2
i of the variance σi

2

of the regression error in model (2). For each candidate h, calculate
matrices Bh and Ah. Assuming Σi= IT, let

τi1;1;…τi1;m;…; τiK;1;…; τiK;m
� �′ ¼ diag AhΨiA

′
h

� �
;

whereΨi is the lower (K×m)-by-(K×m) square sub-matrix of (X′iXi)−1.
3. For each candidate h, get an estimate of WMSEk(h) as

WM̂SEk hð Þ ¼
XN
i¼1

1
N

Xm
t¼1

τik;t þ
XN
i¼1

1
Nσ̂ 2

i

~β0
⋅k

� �0
Bh−Imð Þ0 Bh−Imð Þ~β0

⋅k:

4. Choose the h that leads to the smallest WM̂SEk hð Þ for each k, or
choose a universal h that minimizes ∑K

k¼1WM̂SEk hð Þ:
Choosing the proper values of h and λ that control the extent of

smoothing and regularization is crucial in balancing the variance and
bias of the BTik-Kern estimator ~βcor

i;k . We note that even though ~βcor
i;k is

the estimator we use in analysis, parameter selection is easier to be
conducted on the intermediate Tik-Kern estimator ~β r

i;k (here ~β r
i;k

denotes the sub-vector of ~β r
i corresponding to βi,k). Generalized cross-

validation (GCV) (Wahba, 1990) is a standard method for choosing
the regularization parameter, and was employed by Casanova et al.
(2008, 2009). GCV improves upon the time-consuming leave-one-out
ordinary cross-validation (OCV). However, GCV cannot be applied to
select parameters for the Tik-Kern estimator, whose prediction errors
are different from those of the purely Tikhonov-regularized estima-
tors. Moreover, GCV cannot be used to choose different optimal
parameters for different HRFs. To avoid conducting the computation-
ally intensive OCV, we developed a fast algorithm for choosing h and
λ that minimize theWMSE of ~β r

i;k, and its computational time is of the
same order as T×N for each voxel given the length of HRF and the
number of stimuli.

We define the WMSE of ~β r
i;k as WMSEk h;λð Þ ¼ ∑N

i¼1E‖~β
r
i;k−

βi;k‖
2
= Nσ2

i

� �
. The algorithm is presented below.

Algorithm 2. for selecting h and λ for the Tik-Kern estimator ~β r .

1. Starting from an initial bandwidth h0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
7=TR

p
, compute ~β

0
⋅k as

in Algorithm 1.
2. Estimate σi

2 in model (2) by its OLS estimate σ̂ 2
i for each subject i.

3. For each candidate h, calculate matrices Bh and Ah. Let

bi1 1ð Þ;…; bi1 mð Þ; bi2 1ð Þ;…; biK mð Þ
� �′ ¼ AhR

i
λ−IK⋅m

� �
~β0
⋅k;

and τi1;1;…τi1;m;…; τiK;1;…; τiK;m
� �′ ¼ diag AhR

i
λΨi Ri

λ

� �′
A′

h

� �
:

4. For each combination of candidate (h,λ), get an estimate of
WMSEk(h,λ) as

WM̂SEk h;λð Þ ¼
XN
i¼1

1
N

Xm
t¼1

τik;t þ
XN
i¼1

1
Nσ̂ 2

i

Xm
t¼1

bik tð Þ
� �2

:

5. Choose the h and λ that minimizeWM̂SEk h;λð Þ for each stimulus k
or select a universal pair (h,λ) that leads to the smallest
∑K

k¼1WM̂SEk h;λð Þ.
In the above two algorithms, the OLS estimates σ̂ 2

i are calculated
assuming that the error terms εi are i.i.d. The simulations in the
Simulated data section suggest that the proposed methods are robust
to this assumption. In practice, we do not select the optimal
parameters for each voxel, instead we select one set of optimal
parameters for each region of interest (ROI) based on the data from
one representative voxel or averaged data of the ROI.
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Results

In this section, we present the results obtained from simulated data
and an event-related fMRI dataset, where the proposed estimation and
testingmethods are comparedwith three existingmethodswith similar
order of computation: the Tik-GCV (Casanova et al., 2008), the SFIR
(Goutte et al., 2000), and the basis set method (Friston et al., 1998) that
represents the HRF by a linear combination of the canonical HRF and its
temporal derivative (referred to as the canonical method hereafter).

Simulated data

Signal generation
The simulated data follow the experimental design of the real data—

the MID experiment. In summary, fMRI data for N=19 subjects (the
sample size of the real data) were simulated. For each subject, we
generated 223 frames of fMRI data separated by 2 s (TR) from an event-
related design with six different stimuli, excluding the first four frames
(T=219). More details of the design are described in the Illustrative
example section. Two simulations are conducted: the first focuses on
examining the performance of the proposed method for various
possible HRFs and the second focuses on a scenario closely matching
the real MID data.

Simulation 1. Six HRFs were considered: the first is a zero function,
corresponding to non-responsive voxels; and the remaining five (k=2,
…,6) follow the form hi,k(t)=Ai,k·fi,k(t+δi,k) for i=1,…,N, where Ai,k
and δi,k are the subject-specificmagnitude and latency, respectively. The
function fi,k(t) controls the shape of the HRFs and is assumed to be the
difference of two gamma density functions (Worsley et al., 2002) as
follows (subscript k is dropped here):

f i tð Þ ¼ ba1 ;i1;i

ta1 ;i−1 exp −b1;it
� �

Γ a1;i
� � −c⋅ba2 ;i2;i

ta2 ;i−1 exp −b2;it
� �

Γ a2;i
� � : ð9Þ

The parameters for each simulated HRF are given in Table 2 and
examples of the simulated HRFs are displayed in Fig. 1. Specifically, the
second and third HRFs both follow the canonical form in SPM, differing
in subject-specific magnitude and latency. The fourth and fifth HRFs
across subjects also differ in magnitude and latency, but both have
different functional forms from the canonical one. In addition, to
investigate the limitation of the proposedmethod,we purposely set the
range of the latency variation of the fifth HRF comparable to its W (2 s).
The functional form of the sixth HRF is distinct from the canonical form
and differs in shape across subjects.

Following Casanova et al. (2008), we simulated the error term εi
from an autoregressive model of order 4 (AR(4)), representing a
temporally correlated structure (the lag-1 and lag-2 correlations of the
errors are 0.45 and 0.35, respectively; themore detailed autocorrelation
function is provided in the supplementary file):

εi tð Þ ¼ 0:37εi t−1ð Þ þ 0:14εi t−2ð Þ þ 0:05εi t−3ð Þ þ 0:02εi t−4ð Þ
þ ei tð Þ;
Table 2
The parameters of the simulated HRFs hi,k.

k Ai,k δi,k a1,i a2,i b1,i b2,i c

2 N(300, 502) 0 6 16 1 1 1/6
3 Ai,2+U(30,50) U(−0.2,0.2) 6 16 1 1 1/6
4 U(200, 700) 0 20 22 4 4 2/3
5 Ai,4+U(100, 200) U(−1,1) 20 22 4 4 2/3
6 U(300, 800) 0 U(18,22) U(20,24) U(3,4) U(3,4) 1/6
whereei tð Þ ∼i:i:d N 0;σ2
i

� �
. To reflect the heteroscedastic variances across

subjects in practice, we let σi∼Gamma(1,1/10)+10. For individual
subject's fMRI, the signal-to-noise ratio (SNR) defined as
10log10

var signalð Þ
var noiseð Þ

h i
ranges between −3 and 16 with 99% of probability.

Independent errors were also simulated and the results were very
similar (details are presented in the online supplementary document).
This suggests that the proposed methods are robust to the noise
autocorrelation structure under this experimental design.

We simulated 100 i.i.d. fMRI data sets. Within each simulation, we
first generated N=19 sets of random functions hi,k(t) for k=1,…,6,
and then computed the observed fMRI time series Yi from the
GLM (2) using the design matrices Xi, the simulated error term εi(t),
and a simulated quadratic drift term d0,i+d1,i ⋅ t+d2,i ⋅ t2 with
d0,i∼U(−1,1),d1,i∼U(−0.1, 0.1), and d2,i∼U(−0.05,0.05), where
U(a,b) denotes uniform distribution with minimum a and maximum b.
Simulation 2. The model for Simulation 2 is chosen to better resemble
the real MID data with the following key properties: (1) brain
responses to most of the stimuli are inactive, (2) neuro-activities
across subjects have a large variation, (3) the magnitudes are
positively correlated with the error variance, and (4) the drift
terms are in a much larger scale than HRFs. Specifically, the same
experimental design as in Simulation 1 is used, and the first four
HRFs are set to zero. We let hi,5(t)=hi,6(t)=Ai,6fi(t) using the same
fi(t) as that of the sixth stimulus in Simulation 1, and let Ai,6 be
simulated from a mixture of uniforms: four out of N from Unif (100,
200) and the rest from Unif (6000, 8000). The error terms εi(t) are
generated under the same AR(4)model as above except that theσi's are
from Г(2,1/10)+20, and are ordered to have the same rank as that of
Ai,6, representing a strong positive correlationwith themagnitudes. The
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fMRI data were simulated in the same manner as Simulation 1 with d0,
i~U(8000,15000),d1,i~U(−2,3), and d2,i~(−0.01,0.01).

Statistical analysis and discussion

To compare the different estimation methods, we used the criterion
of average relative error (ARE):

e Skð Þ ¼ 1
N

XN
i¼1

Si;k−Sesti;k

���
���

Si;k
; e RMSEkð Þ ¼ 1

N

XN
i¼1

‖βi;k− β̃
est
i;k ‖

‖βi;k‖
;

where S stands for a summary statistic of the HRF, including HR, TTP,
and W, and RMSE stands for root mean squared error.

Simulation 1
Themedian AREs of the estimates for the HRFs by differentmethods

in Simulation 1 are summarized in Table 3. In the estimation of the first
five HRFs, the BTik-Kern estimator clearly outperforms the other
methods except for SFIR in approximating W of the fifth HRF. This is
because when the horizontal shifts of HRFs are comparable to their W,
the sample-averaged (averaged for each time point) HRF with an
enlarged W has a very different shape from the individual ones, thus
BTik-Kern leads to a biased estimate of W. Similarly, in the sixth
simulation scenario, when very large variations in HRF curves exist
across subjects, an over-shrinkage by BTik-Kern is possible for curves
far away from the average curve, which explains why BTik-Kern is
slightly inferior to SFIR in estimating TTP and W of the sixth HRF.
Nevertheless, the advantage of BTik-Kern in estimating the whole HRF
curve (measured by the RMSE) is still evident even under the sixth
scenario. Interestingly, the canonical method leads to larger errors than
BTik-Kern even when the underlying HRFs follow the canonical form
(k=2,3). This is possibly due to a poor overall model fitting when the
other HRFs are distinct from the canonical form, since the HRFs
corresponding to different stimuli are estimated simultaneously. The
separate effects of kernel-smoothing, regularization, and bias correction
on the HRF estimation are clearly illustrated in Fig. 2, where the
estimation of one hi,2(t) is used as an example: kernel-smoothing
increases the temporal continuity of the OLS estimate; regularization
not only further reduces the variability of the estimate in magnitude,
but also introduces a large bias; the bias-correction step adjusts this bias
and nearly recovers the underlying truth.
Table 3
Median AREs for estimating HR, TTP, W and RMSE of the simulated HRFs from different
methods in Simulation 1.

HRF k BTik-Kern Tik-GCV SFIR (g=1) SFIR (g=10) Canonical

HR 2 0.34 0.54 0.66 0.75 0.83
3 0.25 0.60 0.27 0.36 1.70
4 0.47 0.67 0.75 0.92 0.83
5 0.36 0.57 0.65 0.83 0.58
6 0.36 0.58 0.57 0.73 0.82

TTP 2 0.21 0.62 0.67 0.75 0.50
3 0.19 0.43 0.43 0.48 0.28
4 0.19 0.76 0.52 0.76 1.20
5 0.14 0.50 0.26 0.47 0.45
6 0.11 0.17 0.07 0.06 0.68

W 2 0.29 0.52 0.66 0.60 0.27
3 0.19 0.45 0.30 0.33 0.07
4 0.24 1.34 0.28 0.31 1.28
5 0.50 1.50 0.14 0.13 1.50
6 0.20 0.58 0.13 0.13 0.70

RMSE 2 0.78 1.28 1.09 1.11 1.65
3 0.60 1.19 0.71 0.75 1.68
4 0.89 1.68 1.23 1.18 2.36
5 0.79 1.24 0.84 0.92 1.58
6 0.61 0.86 0.69 0.78 1.34
For hypothesis testing, the proposed kernel-smoothed tests, based
on statistics (7) and (8), are compared with the Hotelling's t-tests of
HRF estimates obtained from Tik-GCV and SFIR. The parametric
canonical method is excluded from the comparison, because the
resulting estimates with similar shapes are not suitable for Hotelling's
tests. Readers are referred to Calhoun et al. (2004) and Lindquist et al.
(2009) for details of hypothesis testing based on the canonical
method. Here we first evaluated the type I error of the tests by testing
the significance of the first HRF — since h1=0, any significant result
detected by a test is a type I error. The proposed test Eq. (7) has a
much smaller type I error than the tests by the other methods as
shown in the first column of Fig. 3. In fact, tests based on the Tik-GCV
and SFIR with inflated type I error resulted from the bias induced by
the regularization incorrectly rejected the null (no signal) at the 5%
level in almost all of the simulations, while the kernel-smoothed tests
did so in 20% of the simulations due to the almost singular design
matrix. We found that if the design matrix is non-singular, the kernel-
smoothed tests will achieve the nominal 5% significance level, while
Tik-GCV and SFIR still have inflated type-I error (the simulation result
is illustrated in the supplementary file).

To evaluate the statistical power of the tests, we conduct tests on
the difference between pairs of the HRFs—since the underlying truth
is hi,k≠hi,k′, any failure in rejecting the null is a type II error. The
proposed method is based on the test statistic Qk,k′ in Eq. (8). The
second and third columns of Fig. 3 display the histograms of the P-
values of testing hi,2 vs. hi,4 and hi,4 vs. hi,5, respectively, using the
different methods. SFIR appears to have the largest power, as it
correctly rejected the null in all simulations, while BTik-Kern has a
smaller power. However, in another simulation where hi,5 was set to
equal hi,4 with the rest of HRFs unchanged, both SFIR and Tik-GCV
incorrectly rejected the null hypothesis most of the time. We suppose
that the power gain of these two methods is at the cost of a large type
two error for this example. Comparisons of the other pairs of HRFs
show a similar pattern.

Simulation 2
Due to the large variation of HRFs in shape and magnitude across

subjects, SFIR performed best in estimating TR and the entire
function. However, BTik-Kern beats the other two methods in
estimating TTP and W (the numerical results are omitted here). In
addition, kernel method achieved a much better power in hypothesis
testing than SFIR and Tik-GCV while keeping the type I error at a
nominal significance level. Fig. 4 shows the histograms of P-values of
testing (1) Ehi;1 ¼ 0, (2) Ehi;5 ¼ 0, (3) Ehi;6 ¼ Ehi;5 and (4) Ehi;5 ¼
Ehi;4 in 100 i.i.d. simulations through the three methods. In the first
and third tests with true null hypotheses, the smoothed method has a
reasonably flat histogram, indicating its P-value close to the nominal
level, and it also demonstrates a larger power than SFIR and Tik-GCV
in the other two tests. Because most HRFs are not significant, the
inflated type I errors of SFIR and Tik-GCV no longer exist in this
example (more discussions on this issue are given in Conclusions).
However, possibly due to the shrinkage imposed by Tikhonov
regularization in these two methods, the resulting two tests are not
sensitive to the deviation from the null hypothesis, compared to the
kernel-smoothed method.

Illustrative example

Subjects
The data were collected from the Monetary Incentive Delay (MID)

Experiment, which measures subjects' brain activity related to
reward and penalty processing (Knutson et al., 2000). In total, 19
subjects (10 male, 9 female) participated in exchange for financial
payment ($40.00 minimum, plus whatever money they managed to
win during the study task). Subjects were recruited from a larger
representative longitudinal community sample (Allen et al., 2007).
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All participants were between 22 and 25 years of age at the time of
participation, with 37% identified as black and 63% identified as white.
Experimental design

In theMID task, each participant completed a protocol comprised of
2 blocks of 72 6-s trials involving either no monetary outcome (control
task), a potential reward (reward task), or a potential penalty (penalty
task). During each trial, participants are shown a shape for 500 ms
(anticipation condition), a variable interval delay of between 4000 and
4500 ms, and a white target square lasting between 160 and 260 ms
(response condition). Participants are then instructed to respondwith a
button press. The cue shape (circle, square or triangle) shown at the
start of each trial signals the type of the trial to be implemented, i.e.,
reward, penalty or no incentive respectively. Additionally, each reward
and penalty shape included lines across the shape, which indicated the
amount of money the participant could win or lose during the trial (i.e.,
3 lines=$5.00, 2 lines=$1.00, and 1 line=$0.20). Participants were
also told that their reaction times to thewhite targetwould be recorded,
and that receiving the monetary reward or preventing punishment
depended on whether they responded within a given window of time.
The order of trials in the protocol for each participant was randomized,
with 25% of them as control trials, 37.5% as reward trials, and 37.5% as
punishment trials. In addition to the fMRI data, measures of each
subject's state anxiety were collected using the state-trait anxiety
inventory (Spielberger and Vagg, 1984).
Data acquisition and preprocessing

Functional images were acquired using a Siemens 3.0 Tesla
MAGNETOM Trio high-speed magnetic imaging device at UVA's
Fontaine Research Park, with a CP transmit/receive head coil with
integrated mirror. Two hundred twenty-four functional T2⁎-weighted
Echo Planar images (EPIs) sensitive to BOLD contrast were collected per
block, in volumes of 28 3.5-mm transversal echo-planar slices (1-mm
slice gap) covering the whole brain (1-mm slice gap, TR=2000 ms,
TE=40ms, flip angle=90°, FOV=192 mm, matrix=64×64, voxel
size=3×3×3.5 mm). Prior to the collection of functional images, 176
high-resolution T1-magnetization-prepared rapid-acquisition gradient
echo imageswere acquired to determine the localization of function (1-
mm slices, TR=1900ms, TE=2.53 ms, flip angle=9°, FOV=250 mm,
voxel size=1×1×1 mm). Data were preprocessed and analyzed using
FMRIB's Software Library (FSL) software (Version 5.98; www.fmrib.ox.
ac.uk/fsl, Smith et al., 2004; Woolrich et al., 2009). Motion correction
involved FMRIB's Linear Image Registration Tool, an intra-modal
correction algorithm tool (MCFLIRT; Jenkinson et al., 2002), with slice
scan-time correction and a high-pass filtering cutoff point of 100 s,
removing irrelevant signals. We used BET (Smith, 2002) brain
extraction, eliminating non-brain material voxels in the fMRI data,
and a 5-mm full width at half maximumGaussian kernel for smoothing.
Images were registered to the Montreal Neurological Institute (MNI)
space by FLIRT (Jenkinson et al., 2002). Regions of interest (ROIs) were
determined structurally using the Harvard subcortical brain atlas, and
were chosen for their likely involvement in affective processing based

http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl
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Fig. 3. The P-values of testing HRFs using different methods in Simulation 1.
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on previous studies of affective neural processes (e.g., Knutson et al.,
2000). The ROIs chosen for analysis were the right putamen, right
caudate, right nucleus accumbens, right pallidum, and right amygdala.

Statistical analysis and discussion

We included six stimuli in the GLM for the MID data: the three
signal stimuli for the three types of monetary outcomes and the
corresponding three reaction stimuli to which the participants are
required to respond. The six stimuli are henceforth referred to as
neutral anticipation, reward anticipation, penalty anticipation, neu-
tral response, reward response, and penalty response. Our analysis
focused on three goals: first, identifying the brain voxels responsive
to each stimulus, especially those involving monetary outcomes;
second, identifying the voxels that react differentially to monetary
reward and punishment stimuli; and third, modeling the relationship
between subjects' brain functions related to reward and punishment
processingmeasured by the fMRI data and self-reported state anxiety.

To identify the brain voxels responsive to each stimulus, we
conducted the proposed kernel-smoothed hypothesis tests in the
Conclusions section using the test statistic Eq. (7). Comparisons were
drawn to the Tik-GCV and the SFIR. Analysis results show a similar
pattern across the five ROIs; thus, results for only the right caudate
and putamen are presented below. Rows 1–3 in Table 4 summarize
the percentages of the voxels in each ROI responsive, respectively, to
the neutral response, the reward anticipation, and the penalty
anticipation stimuli, identified at a significance level of .05 by tests
based on the three methods. Among the six stimuli, the kernel-
smoothed tests identified the most responsive voxels corresponding
to these three stimuli. By contrast, SFIR and Tik-GCV detected much
fewer responsive voxels than the kernel-smoothed test Eq. (7) to all
the stimuli. In Fig. 5, panels (a), (b) and (c), respectively, show the
significant voxels identified by the kernel-smoothed tests in the right
caudate responsive to neutral response, reward anticipation, and
penalty anticipation cues, and panels (d), (e), (f) respectively show
the corresponding voxels in the right putamen. These findings are
consistent with previous MID findings that the right caudate and
putamen are sensitive to the motivational value (reward response
and penalty anticipation) of stimuli (Bjork et al., 2004; Knutson et al.,
2000, 2001).

To identify the brain voxels that react differentially to the monetary
and the neutral stimuli, we conducted tests on six pairs of HRFs: neutral
vs. reward, neutral vs. penalty, and reward vs. penalty for both
anticipatory and response stimuli. The percentages of significant voxels
in the ROIs from the threemethods are displayed in rows 4–5 in Table 4.
The kernel-smoothed tests, based on the statistic Eq. (8), identified a
sizable number of voxels at a significance level of .05 that react
differentially in two among the six pairs of comparisons: neutral
anticipation vs. penalty anticipation, and neutral response vs. penalty
response. The corresponding significant voxels in the right caudate and
putamen are shown in Fig. 6. By contrast, the Tik-GCV and SFIR
identified very few voxels that function differentially for these two pairs
of comparisons.

To explore the connection between reward-processing brain activity
and subjective experience, as measured by the state anxiety score, we
conducted a multiple linear regression with the state anxiety as the
dependent variable, and the four magnitude differences between the
HRFs of monetary and neutral stimuli as predictors. The BTik-Kern
estimator βcor

i;k was used to estimate the HRFs, the HR of which was
extracted for constructing the predictors. For both the right caudate and
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Fig. 4. The P-values of testing HRFs using different methods in Simulation 2.
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putamen, across the four predictors, the BTik-Kern identified a sizeable
number of voxels that are significantly (P-value .05) associatedwith the
magnitude difference between the penalty and neutral anticipation
stimuli, while none of the other methods showed significant results for
any of the four predictors (row 6 in Table 4). Fig. 7 shows the significant
voxels in the right caudate and putamen detected by the BTik-Kern. In
Table 4
The percentages of significant voxels in the right caudate and the right putamen
identified by different tests.

Subject of test ROI BTik-Kern Tik-GCV SFIR

Penalty Right caudate 32.3 5.4 3.3
Anticipation Right putamen 43.9 2.9 4.2
Reward Right caudate 29.4 14.0 6.1
Anticipation Right putamen 40.0 14.7 4.2
Neutral Right caudate 27.6 5.1 5.5
Response Right putamen 45.3 5.4 8.2
Neutral vs. penalty Right caudate 19.4 3.4 4.7
Anticipationa Right putamen 13.2 2.1 4.7
Neutral vs. penalty Right caudate 17.1 5.0 7.8
Responseb Right putamen 20.4 3.8 15.4
Regression of Right caudate 6.6 0.6 3.0
State anxietyc Right putamen 14.3 1.0 2.5

a Voxels react differentially to neutral anticipation stimulus versus penalty anticipation
stimulus.

b Voxels react differentially to neutral response stimulus versus penalty response
stimulus.

c Voxels with difference in HRF magnitudes between penalty anticipation and neutral
anticipation stimuli that are significantly predictive of the individual state anxiety score.
addition, state anxiety was found to be positively correlated with
penalty stimuli and negatively correlated with reward stimuli. Given
that penalty anticipation is expected to co-vary with state anxiety, the
finding that penalty anticipation in the right putamen is significantly
positively correlated with state anxiety provides compelling evidence
that the HRFs estimated by the BTik-Kern are picking up onmeaningful
variance in the data.

Conclusions

Within the framework of the GLM, we propose two nonparametric
HRF estimators that provide flexible modeling of brain activities across
different brain regions, stimuli and subjects. The first kernel-smoothed
estimator is developed to construct population-wide hypothesis tests
on brain responses to stimuli. This test is on thewhole HRF curve rather
than only summaries of the HRF, as in standard methods; simulations
suggest that it has a much smaller type I error than the standard t-tests
based on several existing regularization-based estimators, such as SFIR
and Tik-GCV.

It is important to point out that the larger power of the tests through
SFIR and Tik-GCV methods is largely countered by an enormous type I
error, while the kernel-smoothed test Eq. (7) has a much smaller type I
error under the (close to) singular MID design. Additional simulations
(presented in the online supplementary document) show that the
kernel-smoothed tests have a type I error very close to the nominal 5%
level when the design matrix is non-singular. The inflated type I errors
of SFIR and Tik-GCV are possibly due to the bias incurred by Tikhonov
regularization. In the non-orthogonal design we are investigating, this



Fig. 5. Tests on neutral reaction, reward anticipation and penalty anticipation stimuli.

Fig. 6. Fig. 6(a) and (c) compare the HRFs of neutral anticipation and penalty
anticipation through the kernel-smoothed method for voxels in the right caudate and
right putamen, respectively. 6(b) and 6(d) compare the HRFs of neutral response and
penalty response through the kernel-smoothed method for voxels in the right caudate
and right putamen, respectively.
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bias depends on the values of all the HRFs in the model. We expect two
scenarios under which the tests on HRFs of a single stimulus through
SFIR and Tik-GCV have the nominal significance level: (1) most or all
the HRFs are zero functions, or (2) the design is orthogonal such that
HRF estimates for different stimuli are independent. However, under
the second circumstance, if the number and the order of stimuli evoked
in the experiment are not balanced, the biases due to Tikhonov
regularization are possibly unequal for different HRFs. Consequently, if
the HRFs of most stimuli are far from zero, inflated type I error may still
persist in the SFIR or Tik-GCV based tests for pairwise comparisons
between the HRFs.

The second estimator (BTik-Kern) is constructed by applying both
Tikhonov regularization and kernel-smoothing to the OLS estimate,
where the kernel bandwidth and regularization parameter separately
control the extent of smoothness and regularization constraints on
Fig. 7. Voxels in the right caudate and right putamen, respectively, whose HRF-magnitude
difference under penalty anticipation and neutral anticipation stimuli are significantly
correlated with subjects' state anxiety measures.

image of Fig.�6
image of Fig.�7
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the estimates. Generally, to achieve efficient estimation, the larger the
HRF temporal resolution is, the smaller the smoothing bandwidth
should be; the smaller the SNR is, the stronger the regularization
should be. Under the studied experimental design, we found that
BTik-Kern generally outperforms Tik-GCV and SFIR in terms of
estimation error. The proposed kernel smoothing method does not
require any differentiability constraint and works well when the
underlying function is non-differentiable and the observations are
reasonably dense. However, if the temporal resolution of the HRF is
small, for differentiable HRFs, kernel smoothing may be inferior to the
regularization methods that directly utilize the differentiability
assumption, such as Tik-GCV and SFIR.

A main thrust of this paper is to employ sample-averaged HRFs in
multi-subject data for bias correction. As shown in the simulations,
this is very effective in reducing estimation errors. The reasons for
this improvement are two-fold: first, in principle, the common
characteristics shared by HRFs across subjects can be evaluated
most efficiently by using all the data; second, the sample-averaged
HRF estimate approximates the shape of the HRFs across subjects well
when they are not very different from each other. However, BTik-
Kern may perform poorly when the underlying HRFs vary tremen-
dously across subjects, but this is less of a concern for HRFs in the
same brain region and under the same stimulus. Along the lines of
borrowing information from the sample average, it is also possible to
conduct bias correction towards SFIR and Tik-GCV; this is subject to
further investigation.

Although our primary goal was not to investigate the choice of
regularization parameters for different HRFs, we indeed observed
that the optimal parameters can vary across stimuli. When some
specific HRFs display distinct properties from the rest, it is more
desirable to select the regularization parameter suitable for estimat-
ing only those HRFs. To this end, BTik-Kern is more adaptive than Tik-
GCV, as it allows using different parameters for different HRFs.

As the HRF temporal resolution increases, the number of free
parameters also increases. Consequently, the variability of nonpara-
metric HRF estimates generally increases aswell. In addition, the design
matrixwould become close to singular given a fixed observational time.
Under this situation, a mild Tikhonov regularization with a small
parameter λ is recommended for calculating the subject-averaged HRF
estimate.

The false discovery rate of the multiple hypothesis testing can be
evaluated and controlled by the empirical Bayes approach by Efron
(2008) or the methods by Benjamini and Hochberg (1995) and
Genovese (2000). However, correction of multiple comparisons by
evaluating the family-wise error rate of the proposed test is difficult,
because many factors, such as how the errors are correlated temporally
and spatially, and how HRFs vary across subjects, stimulus types and
voxels, may affect the error rate. This issue is beyond the scope of the
current paper, and is subject to more investigation in future research.
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Appendix A. Evaluation of WMSEk(h)

We first show the derivation of the WMSE of the nonparametric
estimator ~β i,i=1,…,N. It is easy to see that

E ~β i;k tð Þ−βi;k tð Þ
h i2

=σ2
i ¼ ½Vð~β i;k tð Þ ij Þ�=σ2

i þ ½Eð~β i;k tð Þ ij Þ−βi;k tð Þ�2=σ2
i :

As the OLS estimate η̂i ¼ ηi þ X′
iXi

� �−1
X′

i�i, we have

Eðβ̂ i ij Þ ¼ βi and Vðη̂i ij Þ ¼ σ2
i X′

iXi

� �−1
X′

iΣiXi X′
iXi

� �−1
:

WithΣi ¼ IT ; Vðη̂i ij Þ ¼ σ2
i X′

iXi

� �−1
:DenoteVðβ̂ i ij Þ byσi

2Ψi, which
is the sub-matrix of V η̂ i ij Þ

�
corresponding to β̂ i. Then we have

~β i ¼ Ahβ̂ i;Eð~β i ij Þ ¼ Ahβi and V β̃i ij Þ ¼ σ2
i AhΨiA

′
h:

�

For estimating the bias ½Eð~β i;k tð Þ ij Þ−βi;k tð Þ�2, since Eð~β i;k ij Þ− βi;k ¼
Bh−Imð Þβi;k; then

jjEð~β i;k ij Þ−βi;kjj2 ¼ β′
i;k Bh−Imð Þ′ Bh−Imð Þβi;k:

Combining the above equation and the formula for Vðβ̂ i ij Þ, we
have

WMSEk hð Þ ¼
XN
i¼1

Xm
t¼1

τik;t=N þ
XN
i¼1

β′
i;k Bh−Imð Þ′ Bh−Imð Þβi;k= Nσ2

i

� �
:

In practical approximation, σi
2 above is estimated by its OLS σ̂ 2

i ;

and the βi,k's are all replaced with their sample average ~β0
⋅k:

Evaluation of WMSEk(h,λ)

The Tikhonov-regularized estimator of ηi is given by

η̂T
i ¼ ðX′

iXi þ λDÞ−1X′
iY i ¼ ðX′

iXi þ λDÞ−1ðX′
iXiÞη̂i:

Because the lower left (K×m)-by-3 sub-matrix of
X′

iXi þ λD
� �−1

X′
iXi

� �
equals zero, then the sub-vector β̂T

i of η̂T
i ,

which corresponds to βi, equals Ri
λβ̂ i. Consequently, the Tik-Kern

estimator is essentially the kernel-smoothed β̂T
i :

~β r
i ¼ AhR

i
λβ̂ i. We

can easily get its bias and variance as

Eð~β r
i ij Þ ¼ AhR

i
λβi and Vðβ̃r

i ij Þ ¼ σ2
i AhR

i
λΨi Ri

λ

� �
′
A′

h:

The WMSE of ~β r
i;k can be derived in a similar way as that of ~β i;k.

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2012.08.014.
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