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Abstract: For binomial data analysis, many methods based on empirical Bayes interpretations have been

developed, in which a variance-stabilizing transformation and a normality assumption are usually required.

To achieve the greatest model flexibility, we conduct nonparametric Bayesian inference for binomial data and

employ a special nonparametric Bayesian prior—the Bernstein–Dirichlet process (BDP)—in the hierarchical

Bayesmodel for the data. TheBDP is a specialDirichlet process (DP)mixture based on beta distributions, and

the posterior distribution resulting from it has a smooth density defined on [0, 1]. We examine two Markov

chain Monte Carlo procedures for simulating from the resulting posterior distribution, and compare their

convergence rates and computational efficiency. In contrast to existing results for posterior consistency based

on direct observations, the posterior consistency of the BDP, given indirect binomial data, is established. We

study shrinkage effects and the robustness of the BDP-based posterior estimators in comparison with several

other empirical and hierarchical Bayes estimators, and we illustrate through examples that the BDP-based

nonparametric Bayesian estimate ismore robust to the sample variation and tends to have a smaller estimation

error than those based on the DP prior. In certain settings, the new estimator can also beat Stein’s estimator,

Efron and Morris’s limited-translation estimator, and many other existing empirical Bayes estimators. The
Canadian Journal of Statistics 40: 328–344; 2012 © 2012 Statistical Society of Canada

Résumé: Pour une analyse de données binomiales, plusieurs méthodes ayant des interprétations bayésiennes

empiriques ont été développées pour lesquelles une transformation stabilisant la variance et le présupposé

de normalité sont habituellement nécessaires. Afin d’obtenir un modèle avec la plus grande flexibilité,

nous faisons une inférence bayésienne non paramétrique pour des données binomiales et nous utilisons une

densité a priori non paramétrique spéciale, un processus Bernstein-Dirichlet (B-D), dans le modèle bayésien

hiérarchique des données. Le processus B-D est un cas particulier d’un mélange de processus de Dirichlet

(D) basé sur les distributions bêta. La distribution a priori résultante possède une densité lisse définie sur
[0, 1]. Nous considérons deux procédures de chaı̂nes de Monte-Carlo markoviennes afin de simuler à partir

de la densité a posteriori résultante et nous comparons leur taux de convergence et leur efficacité de calcul.

Contrairement aux résultats déjà existants pour la cohérence a posteriori basée sur des observations directes,
la cohérence a posteriori du processus B-D, étant donné des données binomiales indirectes, est obtenue.

Nous comparons les fonctions de rétrécissement et la robustesse des estimateurs a posteriori basés sur les
processus B-D avec plusieurs autres estimateurs bayésiens empiriques et hiérarchiques. à l’aide d’exemples,

nous voyons que l’estimateur bayésien non paramétrique basé sur le processus B-D est plus robuste par

rapport à des variations échantillonnales et il tend à avoir une plus petite erreur d’estimation que ceux basés

sur des densités a priori basées sur les processus D. Dans certains cas, le nouvel estimateur performe mieux

que l’estimateur de Stein, l’estimateur à translation limitée d’Efron et Morris et plusieurs autres estimateurs

bayésiens empiriques. La revue canadienne de statistique 40: 328–344; 2012 © 2012 Société statistique

du Canada
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1. INTRODUCTION

Suppose we have n independent binomial data yi ∼ Binom(Ni, θi), i = 1, . . . , n, where the Ni’s

are predetermined numbers of trials and the θi’s are the unknown probabilities of success. It is of

interest to estimate θ = (θ1, . . . , θn) and to predict a new binomial probability θn+1. This classical

problem has been addressed by Efron &Morris (1971, 1972, 1975), who introduced an interesting

limited-translation estimator under a parametric empirical Bayes framework, and by others (e.g.,

Berry & Christensen, 1979; Lo, 1984; Kong, Liu, & Wong, 1994; Escobar & West, 1995; Liu,

1996) under a Dirichlet-process-based nonparametric Bayes formulation. Recently, these types of

data have been reanalyzed by Brown (2008) using several methods arising from empirical Bayes

and hierarchical Bayes interpretations. The empirical Bayes approaches (Efron & Morris, 1975;

Brown, 2008) usually conduct a variance-stabilizing transformation of the binomial data as a

preliminary step, and assume normality of the transformed data in the analysis. To achieve better

model flexibility, we take a nonparametric Bayes approach for inferring θ in this paper.

Due to the pioneering work by Ferguson (1973, 1974), Lo (1984), and Antoniak (1974), the

Dirichlet process (DP) has been widely used as a prior distribution for unknown probability

measures and employed in nonparametric Bayesian inference (Escobar, 1994; Escobar & West,

1995; Liu, 1996;MacEachern, 1994;MacEachern, Clyde, &Liu, 1999; seeMacEachern&Müller,

2000, for a review). In a typical nonparametric Bayesian procedure, one assumes that the θi’s are

independent and identically distributed (i.i.d.) samples from an unknown distribution F , and F

follows a DP, denoted as F |α ∼ D(α) (Liu, 1996), where α is a given finite measure on the sample

space � on which F is defined, and is called the characteristic measure of the DP. The DP is an

almost surely discrete random probability measure (Blackwell & MacQueen, 1973; Ferguson,

1973), and its posterior distribution is also discrete. In addition, the Bayes estimator resulting

from the DP, which usually is the posterior mean, tends to have unnatural sharp peaks—even

though it is absolutely continuous if α is absolutely continuous (Berry & Christensen, 1979;

Liu, 1996; MacEachern, Clyde, & Liu, 1999). A simple and popular extension to remove the

constraint to discrete randommeasures (Müller&Quintana, 2004) is to use aDPmixture (Escobar,

1988; MacEachern, 1994; Escobar & West, 1995), where the distribution F is represented as a

convolution of a random measure from the DP and a given smooth density function f :

F (x) =
∫

f (x|θ)dG(θ) with G ∼ D(α). (1)

DP mixtures of Gaussian densities have been studied by Lo (1984), Escobar & West (1995), and

Gasparini (1996). Nonparametric models based on DP mixtures are reviewed in MacEachern &

Müller (2000).

Due to the binomial data under study, we focus on the special case where� is the unit interval

[0, 1]. Then it is natural to use a DPmixture of beta densities in nonparametric Bayesian inference

for binomial data. Proposed by Petrone (1999a, b), a new process based on Bernstein polynomials,

which is a special DP mixture of beta densities, can be employed for binomial data analysis; we

refer to it as the Bernstein–Dirichlet process (BDP) in the following. Given a positive integer k

and a function G with support [0, 1], the Bernstein polynomial of order k and G is defined as

B(x; k, G) = ∑k
j=1 G(

j
k
)
(
k
j

)
xj(1 − x)k−j , for x ∈ [0, 1]. IfG is a cumulative distribution function

(CDF) on [0, 1], so is B(x; k, G), and we call it a Bernstein distribution. The BDP is defined as

follows.

Definition 1. Let η be a discrete distribution with support {1, 2, . . .}, M a positive constant, and
F0 a givenCDFon interval [0, 1]. A probability distributionF is said to follow aBDPwith param-
eters (η, MF0), denoted as BD(η, MF0), if F = B(; k, G) for G ∼ D(MF0) and independently
k ∼ η.
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The BDP is also called the Bernstein–Dirichlet (BD) prior by Petrone (1999a, b); its posterior

consistency was shown by Petrone & Wasserman (2002) when direct observations from F are

available. Thus, the BDP is a promising alternative to the DP in nonparametric Bayesian inference

for absolutely continuous distributions defined on [0, 1]. In this paper, through theoretical analysis,

simulation examples, and real data applications, we study the use of the BDP in the following

hierarchical Bayes setting:

yi|Ni ∼ Binom(Ni, θi), i = 1, . . . , n,

θi
i.i.d.∼ F, i = 1, . . . , n,

F ∼ BD(η, MF0), (2)

where the θi’s are unobserved.

The paper is organized as follows: Section 2 briefly describes the posterior distribution of F

under the framework (2). Section 3 studies posterior consistency of the BDP given binomial data

under two different scenarios: (i) the maximum value of the Ni’s is fixed, and (ii) both the Ni’s

and n go to infinity. Section 4 examines computational issues of the problem. Section 5 presents

simulation studies to compare predictive densities when the BDP and the DP are, respectively

used as priors for F . Using the average of squared error (ASE) as a criterion, we also compare

the point estimates of θ under the above two nonparametric Bayesian settings with those of

Stein’s estimator, and Efron and Morris’s limited-translation estimator. Section 6 applies the new

nonparametric Bayesian procedure to real batting-average data from Brown (2008). Comparisons

are drawn with empirical Bayes and hierarchical Bayes estimators analyzed by Brown (2008)

through this real data analysis.

2. POSTERIOR OF HIERACHICAL BAYES MODELS WITH BD PRIORS

Let Beta(a, b) be the beta CDF with parameters a and b, and β(x; a, b) be the associated density

evaluated at x. Denote the conditional distribution of X given Y1, . . . , Yl by [X | Y1, . . . , Yl].

We name the derivative of the Bernstein distribution B(; k, G) the Bernstein density, which is

of the form

b(x; k, G) =
k∑

j=1

Wj,kβ(x; j, k − j + 1), (3)

where the weights Wj,k = G(j/k) − G(j − 1/k). Since b(; k, G) and B(; k, G) are also uniquely

defined by k and Wk = (W1,k, . . . , Wk,k), we use b(x; k, G) and b(x; k,Wk) interchangeably in

the following. The posterior inference for F is focused on the posterior distribution of parameters

k andWk. SinceG ∼ D(MF0) implies that the weightsWk of the beta densities β(; j, k − j + 1),

j = 1, . . . , k in (3) follow a Dirichlet distribution with parameters (Mα1,k, . . . , Mαk,k), where

αj,k = F0(j/k) − F0(j − 1/k), j = 1, . . . , k, it is easy to show that the joint posterior distribution

of (k,Wk) given θ (Petrone, 1999a, b) is proportional to

η(k)�(M)

 k∏
j=1

�(Mαj,k)

−1
k∏

j=1

W
Mαj,k−1

j,k

n∏
i=1

b(θi; k,Wk).
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Given the indirect binomial data considered here, the joint posterior distribution f (Wk, k|yn,Nn)

is proportional to

η(k)
�(M)∏k

j=1 �(Mαj,k)

k∏
j=1

W
Mαj,k−1

j,k

n∏
i=1

ψk,Wk
(yi|Ni),

where

ψk,Wk
(yi|Ni) =

1∫
0

Ni!

yi!(Ni − yi)!
θyi (1 − θ)Ni−yib(θ; k,Wk)dθ

=
k∑

j=1

Wj,k

Ni!

yi!(Ni − yi)!

Q(k + 1, j)

Q(k + 1 + Ni, j + yi)
, (4)

and the function Q(·, ·) is defined as

Q(k + 1, j) = �(k + 1)

�(j)�(k + 1 − j)
. (5)

The predictive distribution, that is, the posterior mean E(F |yn,Nn), which is of the form∑
k η(k|yn,Nn)

∑k
j=1 E(Wj,k|yn,Nn, k)β(θ; j, k + 1 − 1), is difficult to calculate directly. In

real applications, we use Markov chain Monte Carlo (MCMC) simulations to approximate the

predictive distribution. Suppose S MCMC samples of (Wk, k) from their posterior distribution

have been produced. Then the predictive density estimate, denoted by b̂(θ), is given by

b̂(θ) = 1

S

S∑
s=1

k(s)∑
j=1

W
(s)

j,k(s)
β(θ; j, k(s) + 1 − j), (6)

where
{
W

(s)

1,k(s)
, . . . , W

(s)

k(s),k(s)
, k(s)

}
is the sth sample.

3. POSTERIOR CONSISTENCY OF THE BDP

The asymptotic behavior of general Bayes estimates has been investigated by Freedman (1963,

1965), Schwartz (1965), Diaconis & Freedman (1983, 1986), and many others. The posterior

consistency of the DP was established by Barron, Schervish, & Wasserman (1999), and Ghosal,

Ghosh, & Ramamoorthi (1999b) proved posterior consistency of the DP mixture of Gaussians.

For the BDP, Petrone & Wasserman (2002) proved its posterior consistency and Ghosal (2001)

examined its convergence rate for density estimationwhen direct observations of θ are available. In

our case, the observations are not directly on θ, but on discrete binomial data. Then both the number

of trials Ni for each θi, i = 1, . . . , n, and the number of observations n would affect posterior

estimation. Let p0 be the common underlying fixed density function of the coordinates of θ. We

consider two consistency results here: the posterior consistency for estimating the probabilities

of binomial data

P0(y | N) =
1∫

0

θy(1 − θ)N−y N!

y!(N − y)!
· p0(θ)dθ, y = 0, . . . , N,
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with fixed N = max{Ni, i = 1, . . . , n} as n → ∞, and the posterior consistency for estimating

the underlying density p0 as both n and the Ni’s go to infinity. Using the BDP as the prior for p0

implies that the prior ofP0(y|N) is of the formψk,Wk
(y|N) where k ∼ η and given k,Wk follows

a Dirichlet distribution with parameters (Mα1,k, . . . , Mαk,k). Then the posterior distribution of

P0(y|N) is of the same form, with the distribution of k and Wk being modified by the data. With

the fixed maximum value of the Ni’s, the weak consistency of the posterior of P0(y|N) is a direct

corollary of the Schwartz Theorem (Schwartz, 1965; the definition of “weak consistency” for

discrete random variables can be found in, for example, Ghosal, Ghosh, & Ramamoorthi, 1999a

and Barron, Schervish, &Wasserman, 1999). We summarize the result in the following corollary.

Corollary 1. Suppose that (i) p0 is continuous on interval (0,1); (ii) the hyper-parameter F0

has a continuous density on [0, 1] with a positive measure on any nonempty open interval in
[0, 1]; (iii) the number of trials Ni follows a discrete distribution φ, which is independent of the
θi, i = 1, . . . , n; (iv) φ(N) > 0 and φ(l) = 0 for every l > N; and (v) η(k) > 0 for k > 0. Then
the posterior of ψk,Wk

(·|l) is weakly consistent at P0(·|l) for any l ∈ {1, . . . , N}.
Corollary 1 is easily proven using Theorem 2 of Petrone (1999b) and the Schwartz Theorem

(Schwartz, 1965). Corollary 1 indicates that for fixed N = max{Ni, i = 1, . . . , n} as n → ∞,

we can always have weakly consistent estimates of P0(y|N). Thus, we have weakly consistent

estimates of the first N moments of the density p0. In theory, the underlying p0 is not identifi-

able with finite N, since the data only contain information about N moments of p0, and there

are infinitely many Bernstein densities having the same N moments as p0. However, through

simulations (more details in Section 5), we found that the posterior given binomial data can be

very close to that given θ under three mild conditions: (i) p0 is continuously differentiable with

bounded second-order derivatives, (ii) the Ni’s are moderately large (above 30), and (iii) the

prior η assigns small probabilities to very large values of k. This is possibly because, first, under

Condition (i) a Bernstein density of a moderately larger order k can approximate p0 very well

(Ghosal, 2001); second, since each yi/Ni converges to the corresponding θi very fast as the Ni

increases, the binomial data with moderately largeNi’s would carry similar information as that of

θ; and third, Condition (iii) leads to small posterior probabilities of Bernstein densities with very

large orders, which can possibly have similar N moments as p0 but distinct functional curves.

It is of greater importance and interest to investigate the posterior consistency of the BDP

for p0 given indirect binomial data. As far as we know, existing results of posterior consistency

under nonparametric settings are established for the case where direct observations from the

target distribution are available. In the following, notation A � D denotes that A and D are

asymptotically of the same order, andA = O(D) denotes thatA is asymptotically of order smaller

than or equal to that of D. We will show the posterior consistency of the BDP with different

convergence rates of the Ni’s and n going to infinity: (1) the Ni’s are much larger than n; more

specifically, we assume n = O(Nv) for some 0 < v < 1; and (2) the Ni’s are a fractional order of

n, denoted as N � nu for some 0 < u < 1. To simplify the mathematical derivations, we assume

that Ni = N, i = 1, . . . , n, and that N → ∞.

Definition 2. The Kullback–Leibler (KL) distance of two distributions with densities p1 and p2

on [0, 1] is defined by K(p1, p2) = ∫ 1
0 p1(x) log(p1(x)/p2(x))dx.

We say the posterior is weakly consistent at p0 if for any ε > 0 and every ε-Kullback–Leibler

neighborhood Uε of p0, the posterior probability of Uε converges to 1 in probability.

Theorem 1. Suppose (i) p0 is continuous, first-order differentiable on [0,1], and
maxθ∈[0,1]{p0(θ), p

′
0(θ)} ≤ C for some constant C > 0; (ii) the hyper-parameter F0 has a con-

tinuous density with a positive measure on any nonempty open interval in [0, 1]; (iii) Ni = N,
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i = 1, . . . , n; (iv) there exists a constant v1 such that n = O(Nv1 ) and 1/6 > v1 > 0; (v) η(k) > 0

for k > 0 and there exists kn → ∞ such that kn ≤ Nv2 for some positive constant v2 > 0 and
2v2 + 3v1 < 1/2, and such that

∑
k≥kn

η(k) ≤ exp{−r2 · Nr1} for some r1 > v1 and r2 > 0. Then
the posterior of the BDP is weakly consistent at p0.

Condition (iv) in Theorem 1 requires that the numbers of trials Ni’s go to infinity at a much

faster rate than n, so that the posterior based on binomial data is close to that directly based on θ.

Condition (v) ensures that the posterior probability of Bernstein densities whose orders are larger

than kn converges to zero in probability. The proof of Theorem 1 is provided in the supplementary

file.

When N is much smaller than n, the posterior of the BDP behaves distinctly from that with

n being much larger than N. As mentioned in the previous discussion of Corollary 1, there

can possibly be an identification problem of p0 with N being much smaller than n. To address

this issue, the key is to limit the set of density functions under consideration. Thus, we impose

a stronger condition on the prior η as described below. Nevertheless, we conjecture that the

posterior consistency based on the KL neighborhood does not exist for binomial data with N

being much smaller than n. In this case, we prove the weak consistency of the BDP using a

different metric. The L2 distance is a standard metric, which is usually used when the set of

densities is uniformly bounded. If the densities are uniformly bounded and uniformly bounded

away from zero, theL2 distance is equivalent to the KL distance (Ghosal, Ghosh, & van der Vaart,

2000). For mathematical convenience, we assume that p0 is bounded away from both zero and

infinity, and use the L2 neighborhood to show posterior consistency in the following theorem.

Theorem 2. Suppose (i)p0 is continuouswith finite second-order derivatives and bounded away
from both zero and infinity on [0, 1], (ii) the hyper-parameter F0 has a continuous and strictly
positive density on [0, 1], (iii)Ni = N, i = 1, . . . , n, (iv) there exists a constant u ∈ (0, 1/8) such
that N � nu as n → ∞, (v) η(k) > 0 for all the positive integers k and there exists a constant
ς > (1 − u)/u such that η(k) � exp{−kς}. Then, for any ε > 0 the posterior probability of the
ε-L2 neighborhood Vε of p0 converges to one in probability as n → ∞.

Conditions (i) and (iv) in Theorem 2 are to ensure enough observations for every binomial value

y for 0 ≤ y ≤ N, so that there is a uniform convergence of the posterior of binomial probability

P0(y|N) for every y. Under Condition (ii), no region in [0, 1] is priorly weighed too tiny compared

to other regions. Condition (v) is used to constrain the posterior probability of the Bernstein

densities corresponding to large orders k, which can possibly have similar N moments as p0 but

distinct functional curves. The detailed proof of the theorem is given in the supplementary file.

In future research, it will be of interest to investigate the posterior consistency of p0 with random

numbers of trials.

The number of beta components k can be viewed as a kernel-smoothing parameter, and 1/k

is comparable to a smoothing bandwidth. We have observed that if k is fixed at a much larger

value than the real one, the posterior estimate is bumpy and sensitive to the data variation. On the

other hand, if k is fixed at a small value, the posterior estimate can be overly smooth. The two

theorems previously described show that an appropriate prior on k should be adapted to the given

numbers of trials. In practice, we assign a truncated uniform prior to k, that is, η(k) = 1/K for

k ≤ K and η(k) = 0 for k > K for some fixed constant K, and let the data choose the appropriate

smoothness parameter (see simulation studies in Section 5). Petrone &Wasserman (2002) studied

the asymptotic behavior of the posterior of the BDP with a truncated prior on k when direct

observations are available. Empirically, we found that when the Ni’s are large enough (above

30), the posterior of p0 based on (yn, Nn) is close to that based on direct observations θ. We

can follow Petrone and Wasserman’s strategy for choosing an appropriate K for large Ni’s: If

the posterior draws of k concentrate around the boundary k = K, we increase the value of K. On
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the other hand, for small Ni’s, from Corollary 1 we know that to have consistent estimates of

P0(y|N), y = 0, . . . , N, we need at least K > N.

4. POSTERIOR SIMULATION VIA MARKOV CHAIN MONTE CARLO

To facilitate simulation of the posterior distribution resulting from the BDP, Petrone (1999a,

b) introduces an auxiliary random vector Zn = (Z1, . . . , Zn), which is composed of n i.i.d.

samples from G for G ∼ D(MF0). Given Zn and k, the θi’s are mutually independent, and

[θi | k, Zi] = Beta(j, k + 1 − j) if Zi ∈ (
j−1
k

,
j
k
], for j = 1, . . . , k. The Zn serves as indicators

for which beta components the θ are drawn from. Conditional on (Zn, k), Wk is independent

of (yn, Nn) and [Wk | k,Zn] = Dir(Mα1,k + n1,k, . . . , Mαk,k + nk,k), where nj,k = #{Zi ∈
((j − 1)/k, j/k], i = 1, . . . , n}, and Dir(ξ1, . . . , ξk) denotes the Dirichlet distribution with pa-

rameters ξ1, . . . , ξk.

For ease of presentation, define a vector of labels of θ: Jk
n = (j1,k, . . . , jn,k), where ji,k =∑k

j=1 jδ
(
j−1
k

,
j
k
]
(Zi), i = 1, . . . , n, indicateswhich intervalZi falls into. After introducingZn,Wk

can be easily integrated out in the posterior. Then the posterior f (Zn, k|yn,Nn) is proportional to

η(k)

n∏
i=1

Q(k + 1, ji,k)

Q(k + 1 + Ni, ji,k + yi)

Mr

M[n]

r∏
i=1

(n(Z′
i) − 1)!f0(Z

′
i),

where the function Q(k + 1, j) is defined in (5), Z′
1 < · · · < Z′

r are all the distinct values of

(Z1, . . . , Zn), n(Z′
i) is the number of times Z′

i occurs, and M[n] = M(M + 1) · · · (M + n − 1),

where by definition M[0] = 1.

OurMCMC algorithm is focused on simulating the posterior f (Zn, k|yn,Nn). With posterior

samples (Z(s)
n , k(s)) for s = 1, . . . , S, since E(W

(s)

j,k(s)
| Z(s)

n , k(s)) = (Mαj,k(s) + nj,k(s) )/(M + n),

we can have a Rao–Blackwellisation version of the Bernstein density estimate (6) as

b̃(θ) = 1

S

S∑
s=1

 k(s)∑
j=1

Mαj,k(s) + nj,k(s)

M + n
β(θ; j, k(s) + 1 − j)

 , (7)

where nj,k(s) = 
{
Z
(s)
i : Z

(s)
i ∈ ((j − 1)/k(s), j/k(s)]

}
. It is easy to show that (7) always has a

smaller variance than (6).

4.1. Procedure I
We use the Gibbs sampler to simulate (Zn, k). More specifically, we start with values (k(0), Z(0)

n )

that have a nonzero posterior density, and we iteratively update the vector (k, Zn) according to

the following steps:

(I.a) Draw the number of beta components k from

[k|Zn,yn,Nn] ∝ η(k)

n∏
i=1

Q(k + 1, ji,k)

Q(k + 1 + Ni, ji,k + yi)
.

(I.b) For each i, conditional on k and Z[−i], where the Z[−i] denotes the vector (Z1, . . . ,

Zi−1, Zi+1, . . . , Zn), draw Zi from the following distribution:

[Zi | k,Z[−i],yn,Nn] = pi,0 · fk(Zi) +
n∑

v
=i,v=1

pi,v · δZv,
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where the pi,u for u = 0, . . . , n and u 
= i, are probabilities, summing to one, and

pi,0 ∝
k∑

j=1

Mαj,k

Q(k + 1, j)

Q(k + 1 + Ni, j + yi)
, pi,v ∝ Q(k + 1, jv,k)

Q(k + 1 + Ni, jv,k + yi)

for v ≥ 1 and v 
= i. The fk(Zi) is a density function, which is proportional to

f0(Zi)Q(k + 1, ji,k)/Q(k + 1 + Ni, ji,k + yi).

Petrone & Veronese (2002) proposed to simulate the posterior f (θ,Zn, k|yn,Nn) instead of

integrating θ out, which is slightly less efficient than the method described above.

4.2. Procedure II on Marginal Distribution
Due to the clustering effect of the DP, direct simulation ofZn, as in Procedure I, tends to be sticky.

One popular approach to address this issue is to integrate out the values of Zn and simulate from

the resultingmarginal distribution of the cluster indicators In = (I1, . . . , In) ofZn (see discussion

in Escobar, 1994; MacEachern, 1994; MacEachern, Clyde, & Liu, 1999; Jain & Neal, 2004). The

Ii takes an integer value such that if Zi = Zi′ then Ii = Ii′ ; otherwise Ii 
= Ii′ for i, i′ = 1, . . . , n.

Let r be the number of distinct clusters among In, let �c be the set of Ii in the cth cluster with

nc = |�c|, and let ϕj,c = P(ji,k = j for Ii ∈ �c | In, k,yn,Nn) for c = 1, . . . , r. It is easy to see

that

ϕj,c ∝ αj,k

∏
Ii∈�c

Q(k + 1, j)

Q(k + 1 + Ni, j + yi)
. (8)

Then by marginalizing out ji,k, i = 1, . . . , n, conditional on In in f (Zn, k|yn,Nn), the joint

posterior distribution of In and k is given by

f (In, k | yn,Nn) ∝ η(k)
Mr

M[n]

r∏
c=1

{
(nc − 1)!ϒk

�c

}
, (9)

where ϒk
�c

= ∑k
j=1 αj,k

∏
Ii∈�c

Q(k + 1, j)/Q(k + 1 + Ni, j + yi).

Procedure II is to use aGibbs sampler to simulate from the posteriorf (In, k|yn,Nn). In theory,

both procedures converge at a geometric rate and Procedure II converges faster than Procedure I,

given the same number of iterations (see the Appendix for theorems on convergence rates of the

two procedures). However, in practice, we still recommend Procedure I for two reasons. First,

each iteration in Procedure II takes much longer than that in Procedure I. For example, for data

generated from Beta(8, 8) with Ni = 100 for i = 1, . . . , n and n = 100, the CPU computational

time of Procedure II is 50% more than that of Procedure I given the same number of iterations,

and the difference is even more pronounced if the elements of θ are generated from a mixture of

beta distributions or a Bernstein density with a large order k. The extra computational time for

Procedure II results from time-consuming calculation of conditional probabilities of the Ii’s, each

of which takes k times more computational time than that of Zn. Second, we observed that the

two procedures in our BDP-based setting lead to almost the same density estimates. We believe

this is because calculation of the density estimate only requires us to know which interval eachZi

lies in instead of its accurate value. We found that given In, for a cluster containing a moderate

number (more than 15) of elements Ii, the probability ϕj,c tends to concentrate on just one j; that

is, the value ϕj,c for some single j is close to one. Thus, given the same k, the distribution of Wk

conditional onZn is almost the same as that conditional on In. Jain&Neal (2004) proposed a split-

merge Markov chain sampling algorithm, which can speed up the convergence rate of MCMC
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samples of In. Still, since their algorithm can not get around the time-consuming calculation of

ϒk
�c
, it requires much more computational time than Procedure I for each iteration.

4.3. Inferring the Hyper-parameter M from the Data
In the context above, M is treated as a given constant. However, as with the DP, the parameter M

can be important in weighing the prior belief versus the data (West, 1992; Escobar &West, 1995;

Liu, 1996), and this can influence the inference results significantly.

Suppose Zn follows the DP D(MF0) : Zi
i.i.d∼ G and G ∼ D(MF0). It has been shown by

Korwar & Hollander (1973) and Antoniak (1974) that the expected number of distinct values of

Zn is approximately M log((M + n)/M) for a large n. In our nonparametric hierarchical Bayes

setting, where the BDP is used as the prior for F , M regulates the number of distinct beta

distributions the θ are drawn from. A small M around 0 signifies a strong belief that the data are

generated from a single beta distribution. This is because for a fixed n, the posterior probability

of the number of beta components larger than 1 converges to zero as M goes to zero (Petrone,

1999a, b). We find that if both the sample size n and the trial size Ni are small, fixing M at a small

value can lead to a rather undesirable result.

The empirical Bayes approach proposed by Liu (1996) infers M by its MLE, and proceeds

as though M is known. We here assign a uniform prior distribution to M and infer M jointly

with the other parameters. To facilitate MCMC simulations, we discretize the range of M as

{0.1, 0.2, . . . , 9.9, 10}. We chose 10 as the upper bound, which is not far from the values M = 1

and M = 2 suggested by Petrone (1999a, b), so as not to overweigh F0 in the posterior. We add

the following step of simulating M to Procedure I in Section 4.1.

(I.c) full conditional distribution of M given Zn, yn and Nn is proportional to Mr/(M(M +
1) · · · (M + n − 1)), where r is the number of clusters of Zn.

5. SIMULATION STUDIES

We analyze four simulated examples modified from those used in Petrone & Wasserman (2002).

We compare the Bernstein density estimate with the density estimate obtained under a DP-based

nonparametric Bayes setting, which is referred to as theDirichlet density estimate in the following.

Readers are referred to Kong, Liu, & Wong (1994), Liu (1996), and MacEachern, Clyde, & Liu

(1999) for the details of calculating the Dirichlet density estimate.

In addition to the density estimate, point estimates of θ, that is, the estimates of posteriormeans

of θ based on posterior samples, are also examined in comparison with two well-established point

estimators: Stein’s estimator (James & Stein, 1961) and Efron & Morris’s (1971, 1972, 1975)

limited-translation estimator. We denote Stein’s estimator by θ̂
1
, the limited-translation estimator

by θ̂
e
for e = 0.9 and 0.8, the MLE by θ̂

0
, and the posterior estimates based on the DP and the

BDP by θ̂
D
and θ̂

B
, respectively. For simplicity, we call θ̂

D
and θ̂

B
the Dirichlet estimator and the

Bernstein estimator, respectively. We use the average of squared error ASE = ∑n
i=1(θ̂i − θi)

2/n

as the criterion to compare the estimators’ performance.

We chose the uniform distribution on unit interval [0, 1] to be the hyper-parameter F0 in the

BDP BD(η, MF0) and the DPD(MF0). We also chose the uniform prior η on {1, 2, . . . , 200} for
k and the uniform prior on {0.1, 0.2, . . . , 9.9, 10} for M. The posterior estimates are based on

20,000 iterations of the Gibbs sampler after 5,000 burn-in time.

For each simulated set of data below, we first generated n i.i.d. θi from the prespecified

distribution F . Then for each θi, we drew yi from the binomial distribution Binom(Ni, θi) given

each preassigned number of trials Ni, i = 1, . . . , n.
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5.1. Unimodal Beta Density
In this simple example, we let F = Beta(8, 8), which has a Bernstein density with order k = 15

and W7,15 = 1. The sample size n of the simulated binomial data was set at 100, and the Ni’s

are integers sampled uniformly between 100 and 200. The Bernstein density estimate based on

this data set approximates the underlying truth well, as illustrated in Figure 1(b). As shown in

Figure 1(a), the posterior distribution of k has a mode around the true value k = 15, but also has a

long tail. This is possibly because β(; 8, 8) can also be represented as a Bernstein density of order

k > 15. The posterior distribution of M has its mode at the smallest possible value 0.1, consistent

with the underlying single-beta density (graph not shown). Figure 1(c) illustrates the Dirichlet

density estimate for the same data when D(Beta(1, 1)) is used as the prior for F . Because of the

discrete property of the DP, the Dirichlet estimate is very bumpy.

The ASE of the five estimators θ̂
1
, θ̂

0.9
, θ̂

0.8
, θ̂

D
and θ̂

B
are given in the third row of Table 1,

indicating very similar performances for all five estimators.
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Figure 1: Estimation of binomial data from Beta(8,8). (a) The histogram of 20,000 posterior draws of k.
(b) The Bernstein density estimate with its 95% posterior credibility band. (c) The Dirichlet density estimate.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com]
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Table 1: ASE of five estimators of θ.

ASE ASE ASE ASE ASE ASE

Distribution n Ni MLE θ̂
1

θ̂
0.9

θ̂
0.8

θ̂
D

θ̂
B

β(; 8, 8) 200 [100, 200] 1.68e-3 1.53e-3 1.56e-3 1.57e-3 1.60e-3 1.53e-3

0.5[β(; 60, 10) + β(; 10, 60)] 200 100 1.14e-3 1.17e-3 1.17e-3 1.18e-3 7.21e-4 6.80e-4

Exp(8) 200 100 7.29e-4 7.75e-4 7.40e-4 7.33e-4 7.56e-4 7.20e-4

0.5[U(0.25, 0.5) + U(0.75, 1)] 100 100 1.42e-3 1.45e-3 1.46e-3 1.46e-3 1.06e-3 1.04e-3

5.2. A Multimodal Distribution
We generated a binomial data set with n = 200 and Ni = 100 for i = 1, . . . , n from a mixture

distribution F = (1/2)Beta(60, 10) + (1/2)Beta(10, 60). Figure 2(a) shows that the posterior dis-

tribution of k has a mode around the true value k = 69. As illustrated in Figures 2(b) and 2(c),

the Bernstein and the Dirichlet density estimates of F are close to its true density. The ASE of

the five point estimators are summarized in the fourth row of Table 1. Stein’s estimator and the

limited-translation estimator, which tend to shrink toward the global mean, performed even worse

than the MLE, while the θ̂
D
and θ̂

B
are better adapted to the bimodal feature of the data. We see

that θ̂
B
has the smallest ASE, and θ̂

D
gives a similar result.

5.3. Non-Bernstein Densities
In this example, we letF be Exp(8) truncated at 1. Obviously,F does not have a Bernstein density,

and is strongly asymmetric. The simulated binomial data is of size n = 200 and Ni = 100 for

i = 1, . . . , n. The Bernstein density estimate shown in Figure 2(d) approximates the true density

remarkably well and is much better than the Dirichlet density estimate (graph not shown), even

though the true density is not a finite mixture of beta distributions. The ASE of the five estimators

are summarized in Table 1. Again, θ̂
B
achieved the smallest ASE.

We also investigated the performance of the Bernstein density estimate when p0 is discon-

tinuous. We simulated an example where the θi’s are generated from a mixture of uniform den-

sities F = 0.5 Unif (0.25, 0.5) + 0.5 Unif (0.75, 1). As shown in the last row in Table 1, the

Bernstein estimator can beat all other methods in estimating θ, including the Dirichlet estima-

tor. From simulations, we predict that as long as p0 has only a small number of discontin-

uous points, the nonparametric hierarchical Bayes model with the BD prior can still perform

well.

6. BATTING-AVERAGE PREDICTIONS FOR THE 2005 SEASON

Brown (2008) analyzed the batting record for each Major League Baseball player over the course

of a single season (2005). He used the batting records from the earlier part of the season (i.e.,

the first 3 months) to estimate the batter’s potential ability, θi (the probability of the success of

hits), and to predict his batting-average performance for the remainder of the season. This data

set consists of 567 baseball players. In contrast to previous simulated data sets, the Ni’s in this

data are highly heterogeneous, ranging from 11 to 338. Brown proposed a variance-stabilizing

transformation more appropriate for this heteroscedastic data than the transformation used in
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Figure 2: Estimation of binomial data from 0.5Beta(60, 10) + 0.5Beta(10, 60). (a) The histogram of
20,000 posterior draws of k. (b) The Bernstein density estimate with its 95% posterior credibility band for the
binomial datawithn = 200 andNi = 100 for i = 1, . . . , n. (c) TheDirichlet density estimate. (d)Estimation
of binomial data from Exp(8) truncated at 1. The Bernstein density estimate with its 95% posterior
credibility band. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com]

Efron & Morris (1975):

xi = arcsin

√
yi + 1/4

Ni + 1/2
, µi = arcsin

√
θi. (10)

Then we have approximately xi ∼ N(µi, σ
2
i ), where σ2

i = 1/(4Ni).

In addition to the heteroscedasticity, the baseball data also exhibit other special properties:

(a) the distribution of the µi’s cannot be effectively approximated by a normal distribution, as

shown in Figure 3(a), or the density of the θi’s possibly has two modes, as shown in Figure

3(c); and (b) there is a strong correlation between the xi’s and the Ni’s. Brown used three cri-

teria, that is, T̂SE
∗
[�], T̂SE

∗
θ [θ̂] and T̂WSE

∗
[�], defined below, to compare and evaluate how

the two properties affect the performance of different estimators. To be consistent, we will also
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Figure 3: The Batting Average Data of Brown (2008). (a) Histogram of transformed binomial data. (b)
Scatterplot of the Bernstein estimates of µi vs. xi, i = 1, . . . , n. (c) The Bernstein density estimate with its
95% posterior credibility band for the data. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com]

use these three criteria to evaluate our BDP-based estimator. The estimators studied by Brown

include (1) the naive estimator, namely the MLE; (2) overall mean; (3) the parametric empirical

Bayes method-of-moments estimator, or EB(MM); (4) the parametric empirical Bayes maxi-

mum likelihood estimator, or EB(ML); (5) the nonparametric empirical Bayes estimator, which

adopts a generalized form of the kernel estimator, or NPEB; (6) the Harmonic Bayes estimator,

which employs the harmornic prior in the hierarchical Bayes model; and (7) the James–Stein

estimator.

Let {yji, Nji}, j = 1, 2, i = 1, . . . , n denote the records for each half season. Assume that

yji ∼ Binom(Nji, θi). Let �i be an estimator of µi, and let �
0(X) = X be the naive estimator. We

derive the corresponding estimator of θi as θ̂i = sin2 �i(X) according to relationship (10). Since

the nonparametric Bayesian approaches estimate θi directly, to make it comparable to Brown’s

estimators of µi we transform θ̂
B
to �B = arcsin

√
θ̂
B
, which is our Bernstein estimator of µi.

Brown proposed the estimates of the total squared error of µi and θi as: T̂SE[�] = ∑
i(X2i −
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Table 2: Estimation errors for half-season predictions.

Naive Groups’ EB(MM) EB(ML) NPEB Harmonic James- Bernstein Dirichlet

mean prior Stein

T̂SE
∗
[�] 1 0.852 0.593 0.902 0.508 0.884 0.525 0.663 0.697

T̂SE
∗
θ [θ̂] 1 0.887 0.606 0.925 0.509 0.905 0.540 0.683 0.725

T̂WSE
∗
[�] 1 1.120 0.626 0.607 0.560 0.600 0.502 0.532 0.597

�i)
2 − ∑

i 1/4N2i, and

T̂SEθ[θ̂] =
∑

i

(
y2i

N2i
− θ̂i

)2

−
∑

i

1

N2i
· y2i

N2i

(
1 − y2i

N2i

)
.

Since all of the methods are compared to the naive estimator, a natural normalization is to divide

by the estimated total squared error of the naive estimator. Thus, the normalized estimated squared

errors are

T̂SE
∗
[�] = T̂SE[�]

T̂SE[�0]
and T̂SE

∗
θ [θ̂] = T̂SEθ[θ̂]

T̂SEθ[θ̂
0
]
.

The results are summarized in Table 2. The uses of T̂SE
∗
[�] and T̂SE

∗
θ [θ̂] lead to almost

the same results. Our estimator did better than the group mean, EB(ML), and the Harmonic

Bayes estimator. However, the Bernstein estimator did not perform the best, possibly because

of the strong correlation between xi and Ni, which violates the general assumption that the θi’s

are i.i.d. given the Ni’s. The observed high correlation is due to the fact that better-performing

players tend to have much higher numbers of at-bats. The R2 between the {N1i} and {X1i} is 0.25.
Consequently, the batting-average prediction for batters with small numbers of at-bats is shrunk

toward the batting averages of batters with large numbers of at-bats, as shown in Figure 3(b).

This explains the poorer performance of our estimator than EB(MM) and NPEB, and also the

mediocre performance of two other likelihood-based methods, EB(ML) and the Harmonic Bayes

estimator. Readers are referred to Brown (2008) for a discussion of the shrinkage effect of all the

other estimators.

To concentrate on predicting the performance of the batters with the most at-bats, Brown has

also proposed a weighted squared-error criterion defined as:

T̂WSE[�] =
∑

i

N1i(X2i − �i)
2 −

∑
i

N1i

4N2i
and T̂WSE

∗
[�] = T̂WSE[�]

T̂WSE[�0]
.

As shown in the last row of Table 2, the use of T̂WSE
∗
[�] mitigates the effect of correlation,

making our estimator the second-best performer, slightly inferior to the James–Stein estimator.

7. DISCUSSION

In this article, we analyzed binomial data by constructing a nonparametric hierarchical Bayes

model in which the unobserved random probabilities of success are assigned with the BD prior

(Petrone&Veronese, 2002). Under our problem setting, both the number of observations n and the

numbers of trials Ni’s affect final density estimation of the probabilities of success. We showed
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the posterior consistency of estimating the probabilities P0(y|N) when the maximum value of

the Ni’s is fixed, and the posterior consistency of estimating p0 when both the Ni’s and n go to

infinity. It will be of interest in future research to investigate how the asymptotic results turn out

when the Ni’s are random and follow a discrete probability. In addition, investigating posterior

consistency given indirect observations under general nonparametric Bayesian settings could also

be a focus of future research.

We compared the Bernstein density estimate with the Dirichlet density estimate of Liu (1996).

The nonparametric BDP-based approach, which incorporates the continuity information of the

hidden distribution F , is more robust to data variation and performs significantly better than the

Dirichlet density estimate in both simulation studies and the baseball data analysis. In compar-

ison to Stein’s estimator, Efron and Morris’s limited-translation estimator, and other empirical

Bayes estimators, we find that the nonparametric Bayes estimators are more adaptive to the mul-

timodal feature of the data and can achieve a significant gain in efficiency when the second-level

hierarchical distribution is indeed multimodal.
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APPENDIX
Convergence rates of the MCMC samplers
Let FI and FII , respectively denote the forward operator for the Gibbs sampler of MCMC

Procedure I and II, that is,

FI : k → Z1 → Z2 → · · · → Zn; FII : k → I1 → I2 → · · · → In.

Denote fs(Zn, k|yn,Nn) and fs(In, k|yn,Nn) the distributions of the sth step MCMC samples

of FI and FII , s = 0, 1, . . . , respectively. Let π(k,Zn) and π(k, In) denote the equilibrium

distribution.

Theorem 3. Choose (Z(0)
n , k(0)) to be in the support of f (Zn, k|yn,Nn). For a truncated η,

the spectral radii of FI and FII are strictly less than 1, that is, the supremum modulus of the
eigenvalues of FI and FII is smaller than 1. Moreover, the Pearson χ2 distance from fs to the
stationary distribution π is monotone decreasing at a geometric rate as s increases. The corre-
lations between t(Z(s)

n , k(s))) and t(Z(0)
n , k(0)) and between t(I(s)n , k(s)) and t(I(0)n , k(0)) converge to

0 at a geometric rate.

Proof. The result of FII is obvious, since there are only finite states of (k, In) for a truncated

η, and the transition probabilities between any two states are positive. The geometric convergence

rate of FI can be shown by verifying conditions in Theorem 1 of Liu, Wong, & Kong (1995) and

using Lemma 4.1.1. of Liu (1991). �

Theorem 4. The norms of the two forward operators are ordered as FII ≤ FI .

Proof. Theorem 4 is proven using Theorem 1 of Liu (1994). �
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