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A semi-parametric model for estimating hemodynamic response function (HRF) from multi-subject fMRI data is
introduced within the context of the General Linear Model. The new model assumes that the HRFs for a fixed
brain voxel under a given stimulus share the same unknown functional form across subjects, but differ in height,
time to peak, and width. A nonparametric spline-smoothing method is developed to evaluate this common func-
tional form, based on which subject-specific characteristics of the HRFs can be estimated. This semi-parametric
model explicitly characterizes the common properties shared across subjects and is flexible in describing various
brain hemodynamic activities across different regions and stimuli. In addition, the temporal differentiability of
the employed spline basis enables an easy-to-compute way of evaluating latency and width differences in hemo-
dynamic activity. The proposedmethod is applied to data collected as part of an ongoing study of sociallymediated
emotion regulation. Comparison with several existing methods is conducted through simulations and real data
analysis.

Published by Elsevier Inc.

Introduction

Functional magnetic resonance imaging (fMRI) measures brain
activity throughmonitoring blood oxygen level dependent (BOLD) con-
trasts between two or more experimental conditions — an approach
that requires the ability to track changes in blood flowwith high spatial
resolution (Ogawa et al., 1992). BOLD imaging has played a major role
in neuropsychological experiments designed to associate various psy-
chological phenomena with specific regions or circuits of the brain.
Complex, multi-subject fMRI designs involving multisensory stimuli
are growing more common. Such designs are very informative for in-
vestigating brain activity across different regions, stimuli, and subjects.
But complex experimental designs also introduce nontrivial challenges
for joint modeling, analysis, and computation of BOLD imaging data.

A widely-used framework for analyzing fMRI data is the General
Linear Model (GLM) (Friston et al., 1995a; Friston et al., 1995b;
Worsley and Friston, 1995), where the observed BOLD time series are
modeled as a convolution of the experimentally-designed stimulus
paradigm and the hemodynamic response function (HRF). The key to
analysis lies in estimating the HRF. Within the framework of the GLM,
estimation methods differ in their assumptions about the shape of the
HRF. Parametric approaches, which assume the HRF follows a known
functional formwith a number of free parameters, include the canonical

form of mixtures of gamma functions (Friston et al., 1998; Glover, 1999;
Worsley et al., 2002), poisson function (Friston et al., 1994), inverse logit
function (Lindquist and Wager, 2007) and radial basis functions (Riera
et al., 2004).When the underlyingHRF deviates from the assumed func-
tional form, however, parametric methods may be inadequate. By con-
trast, nonparametric approaches make no explicit assumptions about
the functional form of the HRF. These include methods that represent
the HRF with a linear combination of functional bases (Aguirre et al.,
1998; Vakorin et al., 2007; Woolrich et al., 2004; Zarahn, 2002), and
methods that treat the HRF at every time point as a free parameter
(Dale, 1999; Lange et al., 1999). Ultimately, nonparametric methods
allow for more flexibility in accommodating the variability in brain
activity across stimuli, brain regions and individuals.

Since nonparametric methods usually involve a large number of
free parameters and the HRFs are generally believed to be smooth
(Buxton et al., 2004), smoothing techniques such as kernel smoothing
and regularization are commonly employed. For example, the smooth
finite impulse response (SFIR) method (Glover, 1999; Goutte et al.,
2000; Ollinger et al., 2001) exploits a regularization term to obtain
smooth HRF estimates that satisfy a boundary condition. Vakorin et al.
(2007) and Zhang et al. (2007) fitted the HRF by spline bases, and
used Tikhonov regularization to achieve smoothness. More recently,
Casanova et al. (2008, 2009) combined Tikhonov regularization and
generalized cross validation (Tik-GCV) to improve the computation.
Strategies that combine kernel smoothing and Tikhonov regularization
(BTik-Kern) have also been developed (Zhang et al., 2012).

In analyzing multi-subject fMRI data, standard approaches apply a
selected method – one of the above, for example – to each subject's
data independently to account for the variability across subjects
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(e.g., Aguirre et al., 1998; Handwerker et al., 2004). Intuitively,
exploiting population-wide common characteristics may improve the
HRF estimation, especially when the data from each individual have a
low signal-to-noise ratio (SNR). One way to achieve this is to develop
mixed-effect and random-effect models (Friston et al., 1999; Mumford
and Nichols, 2006). Another way is to explicitly assume that the HRFs
of different subjects in a population have a similar shape. For example,
Friston et al. (1998), Liao et al. (2002) and Henson et al. (2002) used
Taylor expansion to evaluate subject-specific magnitudes and latencies
with a fixed canonical HRF shape. Zhang et al. (2012) used the sample-
averaged HRF to conduct bias correction for the Tikhonov-regularized
nonparametric estimator. However, the former approachdoes not read-
ily accommodate the variability in the HRF shapes across different brain
areas and stimuli, while the latter produces well-performing estimates
mainly when the difference in the magnitude accounts for most varia-
tion in the HRFs across subjects.

The GLM can be viewed as a special case of the generalized func-
tional linear model (GFLM, Ramsay and Silverman, 2005), where the
functional parameters of interest are the HRFs. Despite the vast statis-
tical literature on GFLM (Müller and Stadtmüller, 2005; Yao et al.,
2005; Crainiceanu et al., 2009; Di et al., 2009; Li et al. (2010); to
name a few), few of these methods can readily accommodate the
unique features of fMRI. In this article, within the framework of the
GLM, we propose a novel semi-parametric model for multi-subject
fMRI data, assuming that the HRFs for a fixed brain voxel associated
with a given stimulus share a common but unknown functional
form across subjects, but differ in height, time to peak, and width.
We use nonparametric spline expansions (De Boor, 2001; Eubank,
1988; Ruppert et al., 2003; Wahba, 1990) to estimate this functional
form. This semi-parametric model explicitly characterizes the common
properties shared across subjects and is highly flexible in describing
various brain hemodynamic activities across different regions and stim-
uli. In addition, we develop a new fast-to-compute algorithm for model
estimation that is scalable to large-scale multi-subject fMRI data.

The rest of the article is organized as follows. In the Materials and
methods section , we first propose the semi-parametric model for the
HRFs from multi-subject data, then introduce the estimation method
based on spline-basis expansion. A fast algorithm to choose the key
tuning parameters is also developed. In the Results section,we compare
the proposedmethod with several existing methods via simulated data
and apply it to the fMRI data collected during a social emotion regula-
tion experiment involving threat and safety stimuli while alone or
during hand holding by friends and strangers (cf., Coan et al., 2012).
The Conclusion section concludes with a brief discussion.

Materials and methods

A general semi-parametric model for HRF

Let yi(t) for t = δ, ⋯, T ⋅ δ and i = 1, ⋯, n be the observed fMRI
time series of a given brain voxel of subject i, where δ is the experi-
ment time unit when each 3D scan is captured. In most experiments,
δ ranges from 0.5 to 2 s. The GLM is

yi tð Þ ¼ Xi tð Þ⋅di þ
XK
k¼1

∫m
0 hi;k uð Þ⋅vi;k t−uð Þduþ εi tð Þ; ð1Þ

where Xi tð Þ∈Rp is a vector of time-varying covariates, vi,k(t − u) are
known functions, m is a fixed constant, and εi(t) is an error term. The
HRF hi,k(u) describes the brain response of subject i to the kth stimulus
in a given region, and the research interest lies in estimating hi,k(u) for
all i, k. In fMRI studies, the vi,k(t) is called stimulus function,which char-
acterizes the experiment for subject i under the kth stimulus: vi,k(t) = 1
if the kth stimulus is evoked at time t; otherwise, it equals 0. The covar-
iates Xi(t) characterize the BOLD signal from other known sources, such

as respiration and heartbeat. Usually, the Xi(t) ⋅ di is a low-order
polynomial of t modeling the low-frequency drift due to physiological
noise or subject motion. Following the common practice in the liter-
ature (Brosch et al., 2002; Luo and Puthusserypady, 2008; Smith
et al., 1999), we assume Xi(t) = (1,t,t2) with the drifting parameters
di = (d0,i,d1,i,d2,i)′.

Here we propose a flexible semi-parametric model for the HRF
that efficiently utilizes the multi-subject information. We assume
the HRFs for a fixed voxel under stimulus k, the hi,k's, share a common
functional form but differ in magnitude and latency across subjects, as
follows,

hi;k tð Þ ¼ Ai;k⋅f k t þ Di;k

� �
; ð2Þ

where Ai,k and Di,k represent magnitude and latency of the chosen
voxel's reaction to the kth stimulus of subject i, respectively. The func-
tion fk(t) can be viewed as the population-average HRF. No parametric
assumption of fk(t) except differentiability is imposed, distinct from
the proposal by Friston et al. (1998) and Henson et al. (2002) where
fk(t) is fixed as the canonical HRF. Model (2) has twomajor advantages:
first, by assuming all the subjects have a common functional form of the
HRF it enables “borrowing” information across subjects while allowing
for subject-specific characteristics; second, the nonparametric nature
of fk(t) provides maximum flexibility in modeling heterogeneous
brain activities across regions and stimuli.

We note that a shape-invariant model similar to Eq. (2) has been
proposed before for longitudinal data analysis (Ladd and Lindstrom,
2000; Lindstrom, 1995). However, the different contexts lead to funda-
mental distinctions in inference and computation between theseworks
and ours. First, in the GLM for fMRI data, the mean outcome is a sum of
convolutions of HRFs with associated stimuli, and there are no direct
observations from the target functions (the HRFs). The models used
for standard longitudinal data analysis, on the other hand, do not
involve convolutions and deal with only observed data, making the
estimation more straightforward. Second, our model allows multiple
HRFs in possibly distinct shapes to account for different stimulus effects,
while models in standard functional data analysis, including the afore-
mentioned ones typically only allow one shape-invariant function.
Third, as fMRI data usually contain thousands to hundreds of thousands
time series for each subject as opposed to tens to hundreds in standard
longitudinal data, computation is muchmore challenging in the former
and new computational algorithms need to be developed.

Model (2) only considers differences in magnitude and latency
across subjects. To accommodate the variation of the functional width
Wi,k, whichmeasures the duration of brain activity, we will also investi-
gate the following extension:

hi;k tð Þ ¼ Ai;k⋅f k
t þ Di;k

Wi;k

 !
: ð3Þ

Parameter estimation via spline

We propose an estimation strategy for model (2) using spline-basis
expansions. Spline-based methods have been widely used in functional
representation and estimation,where amodelwith parameter functions
becomes a generalized linear model with scalar parameters (basis coef-
ficients). Overfitting can be overcame through basis selection or penali-
zation (for details see Eubank, 1988; Parker and Rice, 1985; Wahba,
1990; Green and Silverman, 1994; and Ramsay and Silverman, 2005).
However, these methods are only applicable for estimating each
subject's HRFs independently without accounting for the population-
wide common structure. The proposed strategy here aims at incorporat-
ing both population-wide and subject-specific characteristics into the
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estimation procedure simultaneously, which is more efficient but also
more challenging in computation.

As the latency Di,k is usually much smaller than the experimental
time unit, the nonlinear model (2) is first converted to a linear one
by using first-order Taylor expansion:

hi;k tð Þ≈Ai;k⋅f k tð Þ þ Ci;k⋅f
1ð Þ
k tð Þ; ð4Þ

where Ci,k = Ai,k ⋅ Di,k, and fk
(1) denotes the 1st derivative of fk

(from now on we will use the superscript (j) to denote the jth deriv-
ative of a function). We then represent fk(t) by cubic B-spline basis:
fk(t) = ∑l = 1

L al,kbl(t), where the basis functions bl(t) are chosen
based on a partition Πq = (t0 = 0, t1, ⋯, tq = m) of the interval [0,m].
Selection of the knots Πq is discussed later. Given the boundary condi-
tion hi,k(0) = hi,k(m) = 0, we let a1,k = aL,k = 0. Then model (1) is
reduced to a bilinear one:

yi tð Þ ¼ Xi tð Þ⋅di þ
XK
k¼1

XL−1

l¼2

Ai;k⋅al;k
� �

ρi
l;k tð Þ þ

XK
k¼1

XL−1

l¼2

Ci;k⋅al;k
� �

ϱi
l;k tð Þ þ εi tð Þ;

ð5Þ

where ρl,k
i (t) = ∫0

m bl(u)vi,k(t − u)du and ϱl,k
i (t) = ∫0

m bl
(1)(u)vi,k

(t − u)du are known functions. Here Ai,k, Ci,k and al,k are not
directly identifiable, butωl,k

i = Ai,k ⋅ al,k and νl,ki = Ci,k ⋅ al,k are unique.
Thus, identifiability can be achieved, for example, by forcing the average
of the estimates of Ai,k, ∑n

i¼1 Âi;k=n, to be 1 for all k.
Let Θ denote all the parameters involved in model (5), it can be

estimated by minimizing the mean squared error (MSE) of yi(t):
Θ̂ ¼ argminMSE Θð Þ, where

MSE Θð Þ ¼ 1
n

Xn
i¼1

XT⋅δ
t¼δ

�
yi tð Þ−Xi tð Þ⋅di−

XK
k¼1

XL−1

l¼2

Ai;k⋅al;k
� �

ρi
l;k tð Þ

−
XK
k¼1

XL−1

l¼2

Ci;k⋅al;k
� �

ϱi
l;k tð Þ

�2

:

A standard approach to minimizing MSE(Θ) is through alternating
least squares algorithm, iterating between the following two steps:
(a) given the estimates of Δ = (al,k; l = 2, …, L, k = 1, …, K), solve
for the ordinary least square (OLS) estimates of Ψ = (di, Ai,k, Ci,k;
i = 1,…, n, k = 1,…, K) in model (5); (b) given the estimates of Ψ,
solve for the OLS estimates of Δ. However, computation of this ap-
proach involves expensive iterations of matrix inversion and transfor-
mation, letting alone the issue of knot selection of Πq. Instead, we
propose an algorithm that avoids knot selection and iterative proce-
dure by imposing a penalty on the roughness of the HRFs, as follows:

(i) Start with a large number of equally-spaced knots such that the
number of free parametersωl,k

i in Eq. (5), K ⋅ (L − 2), is comparable
to but smaller than the number of observations T.

(ii) For each subject i, set νl,ki = 0 so that hi,k(t) = ∑ l = 2
L − 1 ωl,k

i bl(t) in
model (5). Then given a pre-specified penalty parameter λ(> 0),
obtain the parameter estimates d̂i and ω̂ i

l;k by minimizing

XT⋅δ
t¼δ

yi tð Þ−Xi tð Þ⋅di−
XK
k¼1

XL−1

l¼2

ωi
l;k⋅ρ

i
l;k tð Þ

( )2

þ λ⋅
XK
k¼1

∫m
0 h 2ð Þ

i;k uð Þ
n o2

du; ð6Þ

where ∫ 0
m {hi,k(2)(u)}2du = ∫ 0

m {∑l = 2
L − 1 ωl,k

i bl
(2)(u)}2du.

(iii) Estimate al,k by âl;k ¼ ∑n
i¼1 ω̂

i
l;k=n.

(iv) Given âl;k for all l, k from (iii), solve for the OLS estimate
d̂i; Âi;k; Ĉ i;k

� �
for all i, k in model (5).

Upon obtaining the parameter estimates, we estimate the HRFs by

ĥi;k tð Þ ¼ Âi;kf̂ k tð Þ þ Ĉ i;kf̂
1ð Þ
k tð Þ, where f̂ k tð Þ ¼ ∑L−1

l¼2 âl;kbl tð Þ. The sum-
mary statistics, height (HR), time to peak (TTP) and width (W), respec-
tively characterizing themagnitude, reaction time and duration of brain
response to the kth stimulus of ith subject are extracted based on ĥi;k tð Þ
through procedures described in Lindquist and Wager (2007).

Step (ii) is equivalent to estimating each subject's HRFs indepen-
dently with each hi,k(t) represented by the given set of spline basis in
a fully nonparametric manner, and Step (iii) is to take the average of
these nonparametric HRF estimates as the estimate of fk(t), based on
which subject-specific parameters Ai,k and Ci,k are reevaluated in Step
(iv). Besides simplifying the calculation, there are two reasons justifying
evaluating fk(t) by the average of independent estimates of hi,k(t): first,
by assuming population-average latency E Di;k

� �
to be zero for all k

without loss of generality, Di,k can be considered averaged out close to
zero with large enough n in estimating fk(t) —population mean of hi,
k(t); second, the estimate of al,k should depend little on the value of νl,
k
i, which is much smaller than ωl,k

i , if Di,k is much smaller than the
time unit.

In Step (ii), the penalization on the integral of squared second
derivatives of the HRFs is used to control the roughness of the esti-
mate. A similar strategy is adopted in Marrelec et al. (2001, 2003).
To solve for Eq. (6), we first convert model (1) with the representation
hi,k(t) = ∑l = 2

L − 1 ωl,k
i bl(t) to a matrix form as

Yi ¼ Λ i⋅ηi þ εi; ð7Þ

where Yi = (yi(1), …, yi(T))′, ηi = (di′,ω2,1
i , …,ωL − 1,K

i )′, εi =
(εi(1), …,εi(T))′, and Λi is the design matrix composed of Xi and
ρl,k
i (t) for all k and l. Let P be a (3 + (L − 2) ⋅ K) × (3 + (L − 2) ⋅ K)

matrix whose first three rows and three columns are zeros, and the

ð2þ lþ k−1ð Þ L−2ð Þ;2þ~l þ k−1ð Þ L−2Þð Þ entry equals ∫m
0 ∫m

0 b 2ð Þ
l uð Þb~l

2ð Þ
~uð Þdud~u

for l;~l ¼ 2;…; L−1 and k = 1, …, K. Penalizing the roughness of the
HRF estimates characterized by∫ 0

m {hi,k(2)(u)}2du is equivalent to regular-
izing the estimate of ηi by P in linear regression. Therefore, the optimizer
ηi of expression (6) for a fixed λ is given by

η̂ i ¼ Λ ′
iΛ i þ λ⋅P

� �−1
Λ ′
i⋅Yi: ð8Þ

For the more flexible model (3), since Wi,k is usually close to 1, we
will again use Taylor expansion to approximate:

hi;k tð Þ≈Ai;k⋅f k tð Þ þ Ai;k⋅Di;k⋅f
1ð Þ
k tð Þ−Ai;k⋅ Wi;k−1

� �
f 1ð Þ
k tð Þ⋅t:

Similar spline-basis-based estimation strategy as above can be
developed to estimate the parameters, with Step (iv) beingmodified to

• Given âl;k for all l, k from (iii), solve for the ordinary least square (OLS)
estimate ofΨ = (di, Ai,k, Ci,k, Ei,k), where Ei,k = − Ai,k ⋅ (Wi,k − 1) for
all i, k in model (3).

Then hi,k(t) is estimated by ĥi;k tð Þ ¼ Âi;kf̂ k tð Þ þ Ĉ i;kf̂
1ð Þ
k tð Þþ

Ê i;kf̂
1ð Þ
k tð Þ⋅t, and the estimates of HR, TTP, and W are obtained in the

same manner as above. The key notations above are summarized in
Table 1.

Algorithm for selecting penalty parameter

The penalty parameter λ controls the balance between the fitting
error and the smoothness of the estimated function form. Ordinary
cross-validation (OCV) and generalized cross-validation (GCV, Wahba,
1990) are standard methods for choosing the penalty parameter
for Tikhonov-regularized estimates. In the context of functional data
analysis, Reiss and Ogden (2007, 2009) proposed selection procedures
based on GCV, as well as restricted maximum likelihood (REML),
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which is also investigated inWood (2011). In general, OCV is time con-
suming, especially for datawith a large number of voxels, while theGCV
and REML-based methods are designed to select the optimal λ for esti-
mating individual hi,k(t) instead of the aggregated function fk(t). Since
the ultimate goal of using penalization in Step (ii) is to obtain
sample-averaged estimate f̂ k tð Þ, we propose an alternative computa-
tionally efficient algorithm for evaluating the average mean squared
error (AMSE) of âl;k, the coefficients of fk(t), and select the λ leading
to the smallest estimated AMSE. The analytical details for deriving the
mean and variance of âl;k as functions of λ are given in Appendix A.
The estimation algorithm is as follows.

1. Starting from a small λ0, say 0.1, obtain the estimate η̂0
i using

formula (8) . Based on it, evaluate the variance σi
2 of εi in Eq. (7)

for each subject i by the model fitting error. Denote the median
of the estimated σi

2 by σ̂ 2 and the average of η̂0
i by η0.

2. For each candidate λ, calculate the matrices Ωλ
i = Λ i′Λ i + λ ⋅ P and

Ω0
i = Λ i′Λ i, and obtain the quantities rk,li and τk,li from

d0;i;d1;i;d2;i; r
i
1;2;…; ri1;L−1; r

i
2;2;…; riK;L−1

� �
′ ¼ Ωi

λ

� �−1
Ωi

0−I3þK⋅ L−2ð Þ

� 	
η0 ;

πi
0;π

i
1; π

i
2; τ

i
1;2;…; τi1;L−1; τ

i
2;2;…; τiK;L−1

� �
′ ¼ diag Ωi

λ

� �−1
Ωi

0 Ωi
λ

� �−1
� 	

σ̂ 2
:

3. For each candidate λ, get an estimate of AMSE as

dAMSE λð Þ ¼
XK
k¼1

XL−1

l¼2

Xn
i¼1

τik;l=n
2 þ

XK
k¼1

XL−1

l¼2

Xn
i¼1

rik;l=n

 !2

:

4. Choose the λ that minimizes dAMSE λð Þ.
As a large number of coefficients for the basis functions are

involved in the estimation, we employed a small penalization in
Step 1 to prevent the possible issue of ill-posed matrix inversion

and to regularize the variation of the estimates at the cost of a small
bias. Computation of the algorithm is of linear order of the number
of subjects for each voxel. In practice, instead of selecting the optimal
parameter for each voxel, we use one penalty parameter for each
region of interest (ROI), which is selected based on the data from
one representative voxel or averaged data of the ROI. Note that the
calculation of σ̂ 2 is under the assumption of independent and identi-
cally distributed (i.i.d.) error terms εi. Simulations show that the
proposed parameter selection procedure is robust to deviations from
this assumption.

Results

Simulated data

Data generation
The simulation study follows the event-related experimental

design of the Monetary Incentive Delay (MID) task (Knutson et al.,
2000), where 6 stimuli are randomized over a span of 223 frames
with occurrence percentages of 12.5%, 18.75%, 18.75%, 12.5%, 18.75%,
and 18.75%, respectively. The corresponding six HRFs are simulated
from a form similar to model (3): hi,k(t) = Ai,k ⋅ ϕi,k((t + Di,k)/Wi,k),
with the function ϕi,k(t) controlling the shape of the HRF for the kth
stimulus of the ith subject. FollowingWorsley et al. (2002), ϕi,k(t) is as-
sumed to be the difference of two gamma density functions as follows
(the subscript k is dropped here):

ϕi tð Þ ¼ b
a1;i
1;i

ta1;i−1exp −b1;it
� �

Γ a1;i
� � −c⋅ba2;i2;i

ta2;i−1exp −b2;it
� �

Γ a2;i
� � : ð9Þ

The parameters for the simulated HRFs are given in Table 2 and
examples of the simulated HRFs are displayed in Fig. 1. Specifically,
the first and the second HRFs follow exactly the canonical form in
SPM, only differing in subject-specific magnitude and latency, while
the third are added some variation of the duration of brain activity
(Wi,k) across subjects. The range of Wi,k is chosen to be not too far
from 1 such that the values of hi,k(t) beyond domain [0,m] are close
to zero. The fourth and the fifth HRFs follow a functional form distinct
from the canonical one, and differ in magnitude, latency and width.
The functional shapes for the six HRFs vary across subjects.

Following Casanova et al. (2008), we generated error terms εi
from an autoregressive model of order 4 (AR(4)) with lag-1 correla-
tion of 0.45 and lag-2 correlation of 0.35:

εi tð Þ ¼ 0:37εi t−1ð Þ þ 0:14εi t−2ð Þ þ 0:05εi t−3ð Þ þ 0:02εi t−4ð Þ þ ei tð Þ;

where ei tð Þ∼i:i:d N 0;σ2
i

� �
, and σi ∼ Gamma(1, 1/10) + 10 imitating

the heteroscedastic variances across subjects in practice. The SNR

defined as 10 log10
var signalð Þ
var noiseð Þ
n o

varied between −3 and 16 with 99%

of probability across subjects.
We simulated 100 i.i.d. fMRI data for n = 19 subjects, each of

which has 223 frames separated by 2 s (TR). Within each replicate,
we first simulated n sets of random functions hi,k(t) based on the pa-
rameters in Table 2, then calculated the convolution of hi,k(t) and the

Table 1
Notations of key parameters.

Parameter Description

Xi(t) A vector of known time-varying covariates
di Coefficients for Xi(t)
Ai,k Subject-specific magnitude of the kth HRF
Di,k Subject-specific latency of the kth HRF
Wi,k Subject-specific width of the kth HRF
Ci,k Product Ai,k ⋅ Di,k

Ei,k Product − Ai,k ⋅ (Wi,k − 1)
al,k Coefficients of the spline bases representing

the kth common function fk(t)
ωl,k

i Ai,k ⋅ al,k also coefficient of the spline basis
bl(t) in hi,k(t) = ∑ l = 2

L − 1 ωl,k
i bl(t)

νl,k
i Product Ci,k ⋅ al,k

ρl,ki (t) Known functions ∫0
m bl(u)vi,k(t − u)du

ϱl,k
i (t) Known functions ∫0

m bl
(1)(u)vi,k(t − u)du

Table 2
Parameters of simulated HRFs hi,k, where N(μ, σ2) denotes a normal distribution with mean μ and variance σ2, and U(a,b) denotes a uniform distribution with boundary values a and b.

k Ai,k Di,k Wi,k a1,i a2,i b1,i b2,i c

1 N(300, 502) 0 1 6 16 1 1 1/6
2 Ai,1 +U(30, 50) U(-0.2,0.2) 1 6 16 1 1 1/6
3 Ai,2 Di,2 U(0.9, 1.1) 6 16 1 1 1/6
4 U(200, 700) U(-1,1) 1 20 22 3 3 2/3
5 Ai,4 +U(60, 100) Di,4 U(0.8,1.2) 20 22 3 3 2/3
6 U(300, 800) 0 1 U(18,22) U(20,24) U(3,4) U(3,4) 1/6
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stimulus function as in the GLM (1), and finally obtained the observed
fMRI data by adding the generated AR(4) errors and a drifting term to
the convolution, with the drifting parameters being d0,i ~ U(-1, 1), d1,
i ~ U(-0.1, 0.1), d2,i ~ U(-0.05, 0.05). The first four frames were ex-
cluded in the data analysis, giving T = 219.

Statistical analysis and discussion
To draw a comparison between the proposed semi-parametric

spline method with the existing nonparametric methods, we applied
the following methods to estimate the HRFs from the simulated data:
the basis set method (Friston et al., 1998) that represents the HRF by
a linear combination of the canonical HRF and its temporal derivative
(referred to as the canonical method hereafter); SFIR (Goutte et al.,
2000); Tik-GCV (Casanova et al., 2008); BTik-Kern (Zhang et al.,
2012); and the spline methods based on models (2) and (3), referred
to as “Spline” and “Spline-W”, respectively.

We used the criterion of average relative error (ARE) for comparison:

e Skð Þ ¼ 1
n

Xn
i¼1

Si;k−Sesti;k




 



Si;k

; e RMSEkð Þ ¼ 1
n

Xn
i¼1

hi;k−hesti;k

��� ���
hi;k
�� �� ;

where S stands for a summary statistic of the HRF, including HR, TTP and
W, and RMSE stands for root mean square error, and ∥ ⋅ ∥ is the L2 norm.

The median AREs of the HRF estimates in the 100 replicates from
different methods are reported in Table 3. Both the spline methods
and BTik-Kern outperform Tik-GCV, SFIR (with g = 1), and the ca-
nonical method, leading to significantly smaller AREs of almost all
statistics. The spline methods beat BTik-Kern except in estimating
HR and RMSE for the HRFs following the canonical form (HRFs 1–3).
Though BTik-Kern also utilizes information across subjects, it does not
explicitlymodel the common functional form fk(t) and does not impose
differentiability on HRFs. This explains its general under-performance
comparing to the spline methods. Nevertheless, the bias correction
implemented in BTik-Kern using sample-averaged data is most effec-
tive in gaining efficiency when the HRFs mainly differ in magnitude,
as evident from the smaller AREs for the first three HRFs. This advantage
diminishes when the difference in magnitude is not the major source
of the variability in the HRFs across subjects, as in HRFs 4–6. Readers
are referred to Zhang et al. (2012) for detailed comparison between
BTik-Kern and the other three methods. Interestingly, the two spline
methods lead to very similar results, possibly because Taylor expansion
on W can be effectively assimilated into the expansion on latency as
both of them involve the term fk

(1)(t). The simulation also demonstrates

that the two spline methods based on models (2) and (3) can well ap-
proximate the sixth HRFs even though the models do not exactly
match the underlying truth.

AR (1) and i.i.d. errorswere also simulated and the results were very
similar to the above (thus omitted here), suggesting that the proposed
method is robust to the autocorrelation structure of the noise.

Illustrative example

Subjects
The data were collected during a study examining human social

contact, attachment, and the social regulation of emotion (Coan, 2010;
Coan, 2011; Coan et al., 2006; Coan et al., 2012). In total, 22 pairs of
friends (11 males, 11 females) participated in exchange payment. Sub-
jects were recruited from a larger representative longitudinal commu-
nity sample (Allen et al., 2007). All participants were between 22 and
28 years of age at the time of participation, with 37% identified as
black and 63% identified as white.
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Fig. 1. Examples of simulated HRFs: (a) one simulated HRF for each of stimuli 1 to 5. (b) Several simulated HRF 6.

Table 3
Median AREs for estimating HR, TTP, W and RMSE of the simulated HRFs from different
methods.

HRF k Spline Spline-W BTik-Kern Tik-GCV SFIR Canonical

HR 1 0.43 0.42 0.42 0.49 0.71 0.75
2 0.42 0.40 0.27 0.44 0.74 0.70
3 0.39 0.35 0.25 0.44 0.36 0.85
4 0.30 0.33 0.50 0.62 0.75 0.74
5 0.32 0.34 0.44 0.59 0.72 0.83
6 0.20 0.19 0.43 0.60 0.63 0.87

TTP 1 0.15 0.16 0.30 0.43 0.77 0.35
2 0.12 0.13 0.11 0.32 0.56 0.56
3 0.12 0.13 0.24 0.44 0.48 0.50
4 0.05 0.07 0.10 0.60 0.49 0.42
5 0.08 0.09 0.16 0.60 0.45 0.42
6 0.03 0.03 0.12 0.18 0.09 0.70

W 1 0.20 0.19 0.25 0.44 0.64 0.10
2 0.13 0.16 0.18 0.39 0.62 0.21
3 0.16 0.17 0.16 0.38 0.36 0.24
4 0.19 0.20 0.26 1.14 0.34 0.82
5 0.30 0.31 0.36 1.06 0.30 0.85
6 0.13 0.13 0.17 0.59 0.12 0.77

RMSE 1 0.59 0.62 0.66 0.95 1.10 0.94
2 0.53 0.51 0.53 0.79 1.05 1.27
3 0.54 0.54 0.52 0.97 0.83 1.35
4 0.55 0.60 0.75 1.38 1.06 1.59
5 0.58 0.61 0.82 1.38 1.06 1.77
6 0.30 0.31 0.61 0.79 0.72 1.56
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Experimental design
One participant of each pair was threatened with mild electric

shock during fMRI BOLD imaging while either holding the hand of a
stranger, holding the hand of a friend, or holding no hand at all in
three separate blocks. Each block – randomized within subjects –

designed to test the neural response to threat during social contact
with a familiar other, during social contact generally, and alone,
respectively. Each block was composed of 24 trials half of which
possessed a 20% chance of shock and the other half were safe from the
threat of shock. Threat cues (a red “X” on a black background) indicated
a 20% likelihood of receiving an electric shock to the ankle - shock
would accompany the end cue if delivered, and safety cues (a blue “O”
against a black background) indicated no chance of shock. Each trial
began with a threat or safety cue followed by a fixation cross during
the resting period. The resting period lasted for 4–10 s (jittered cross
trials), at which time an end cue would be presented for 1 s. Electric
shocks were delivered using an isolated physiological stimulator
(Coulbourn Instruments, Allentown, PA) with 1 second duration at
4 mA. All subjects received two shocks per block.

Data acquisition and preprocessing
A Siemens 3.0 T MAGNETOM Trio high-speed magnetic imaging

device at UVA's Fontaine Research Park, with a CP transmit/receive
head coil with integratedmirror, was used to collect fMRIs. Two hundred
twenty-three functional T2∗-weighted Echo Planar images (EPIs)
sensitive to BOLD contrast were collected per block, in volumes of
28 3.5-mm transversal echo-planar slices (1-mm slice gap) covering
the whole brain (1-mm slice gap, TR = 2000 ms, TE = 40 ms,
flip angle = 90∘, FOV = 192 mm, matrix = 64 × 64, voxel size =
3 × 3 × 3.5 mm). Before functional scanning, 176 six high-resolution
T1-magnetization-prepared rapid-acquisition gradient echo images
were acquired to localize function (1-mm slices, TR = 1900 ms,
TE = 2.53 ms, flip angle = 9∘, FOV = 250 mm, voxel size = 1 ×
1 × 1 mm).

Preprocessing was carried out via FMRIB's Software Library (FSL)
software (Version 5.98; Smith et al., 2004; Woolrich et al., 2009).
Motion correction was conducted via the Linear Image Registration
Tool (MCFLIRT; Jenkinson et al., 2002) of FMRIB, with slice scan-
time correction and high-pass filtering (100 second cutoff). BET
(Smith, 2002) brain extraction was used to eliminate non-brain voxels,
and a 5-mm full width at half maximum Gaussian kernel was used for
smoothing. Registration of the images in FLIRT (Jenkinson et al., 2002)
was based on Montreal Neurological Institute (MNI) space.

ROIs were determined structurally using the Harvard subcortical
brain atlas, and were chosen for their likely involvement in affective
processing based on previous studies (e.g., Knutson et al., 2000).
The ROIs chosen for analysis were the dorsal anterior cingulate cortex
(dACC), orbitofrontal cortex (OFC), and insula, regions that are
commonly implicated in negative affect and threat responding.

Statistical analysis and discussion
The proposed method was applied to the fMRI data from the three

ROIs voxel by voxel. We included three stimuli – threat cue, safety
cue, and rest period – in the GLM for each fMRI time series. To com-
pare the brain activity responsive to the threat cue under different
hand holding conditions, we first estimated the HRFs of the three
stimuli for each subject and voxel by the spline method within each
block independently, then extracted the HR estimates of the threat
cue subtracted by the HR estimate of the baseline safety cue, and
conducted pairwise comparison of the resulting quantities under dif-
ferent hand holding conditions (alone, stranger, friend) using t-tests.
Table 4 presents the percentages of the voxels in the three ROIs
whose response magnitudes to the threat cue were identified to be
different in the pairwise comparison of hand holding conditions,
with the false discovery rate (FDR) controlled at 5%, 10%, and 20%, re-
spectively. We used Benjamini–Hochberg (BH) threshold (Benjamini
and Hochberg, 1995) based on the predetermined FDR for multiple
hypothesis testing correction. Fig. 2 shows the ĥi;k tð Þ and f̂ k tð Þ esti-
mated from the proposed approach for a representative voxel in
dACC with a significant contrast between alone and hand-holding-
with-friend conditions at rest. The pooled estimate f̂ k tð Þ clearly is
much less variant and smoother compared to the individual HRF esti-
mates. The upper panel in Fig. 3 displays the heat maps of P-values
in testing whether the response magnitudes of voxels in the three
ROIs – dACC, OFC, and insula – to threat is greater under the alone
condition than under the hand-holding-with-friend condition.

The data analysis shows that the number of voxels identified as
more activewas greatestwhen subjectswere alone and leastwhen sub-
jectswere holding handswith a friend. These results are consistentwith
those reported by Coan et al. (2012). Beckes and Coan (2011) provided
an explanation through social baseline theory: because emotion reg-
ulation is an effortful and energy consuming activity, the human
brain has evolved to “outsource” emotion regulation efforts to its
social resources whenever possible-a strategy that leads humans to
perceive the environment as less threatening when in close proxim-
ity to relational partners like friends and loved ones. Thus, people are
less threat responsive and use fewer resources related to effortful
self regulation when social support is available. Moreover, the rela-
tively small difference between friend and stranger hand holding
provides additional evidence that proximity to other humans (even
strangers) is default or baseline regulatory strategy of the human
brain.

Interestingly, we also found that the brain at “rest” is actually
more active during the alone condition than during hand holding, as
shown in the last three columns of Table 4 and the lower panel of
Fig. 3. Though this phenomenon has not been previously reported, it
is likely that anticipatory anxiety builds over the resting period,
diminishing either after the threat has been removed or the actual
painful stimulus has been applied (e.g., Grillon et al., 2007). Thus,

Table 4
The percentages of voxels in the ROIs selected by the spline method with different response magnitudes under different hand holding conditions after controlling for the FDR at 5%,
10%, and 20%, respectively. ⋆The number before “/” is the percentage of voxels having larger magnitude under the first condition than that under the second condition; the number
after “/” is the percentage of voxels having smaller magnitude under the first condition than that under the second condition.

Comp. cond. FDR Threat % Rest %

dACC OFC Insula dACC OFC Insula

% +/−⋆ +/−⋆ +/−⋆ +/−⋆ +/−⋆ +/−⋆

Alone vs Friend 5 22.7/5.9 11.8/2.8 21.1/2.9 42.1/0.7 24.3/1.4 28.8/4.8
10 34.8/7.8 18.5/8.3 27.7/5.1 50.9/0.9 31.6/4.7 34.9/9.0
20 47.1/10.4 25.2/16.3 35.6/9.6 59.3/2.3 40.4/10.8 41.9/13.3

Alone vs Stranger 5 37.3/5.7 19.5/5.1 24.1/6.5 41.3/1.5 26.2/2.7 34.5/4.1
10 45.8/7.8 27.3/10.3 31.7/12.8 48.5/2.5 34.4/7.0 41.2/7.4
20 55.8/10.0 35.0/16.6 39.4/17.0 56.2/4.3 42.1/11.3 47.8/11.2

Stranger vs Friend 5 2.8/12.6 6.4/9.9 17.0/11.4 11.9/9.6 11.3/10.2 16.9/22.4
10 5.8/20.0 11.5/18.9 23.3/17.6 21.6/13.9 17.0/17.2 22.4/27.5
20 10.6/27.2 17.9/27.8 28.8/24.3 31.0/20.4 23.7/24.8 28.0/32.1
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Fig. 2. Estimated ĥ i;k and f̂ k tð Þ for one selected voxel in dACC. (a) HRFs in response to safety cue when hand holding with friends; (b) HRFs in response to threat cue when hand holding with
friends; (c) HRFs at rest when hand holding with friends; (d) HRFs in response to safety cue when alone; (e) HRFs in response to threat cue when alone; (f) HRFs at rest when alone.

Fig. 3. Heat maps of significant voxels in ROIs. (a) Voxels in dACC with larger response magnitudes to threat cue when alone than when holding hand with friends; (b) voxels in OFC
with larger response magnitudes to threat cue when alone than when holding hand with friends; (c) voxels in insula with larger response magnitudes to threat cue when alone
than when holding hand with friends; (d) voxels in dACC with larger response magnitudes during rest period when alone than when holding hand with friends; (e) voxels in
OFC with larger response magnitudes during rest period when alone than when holding hand with friends; (f) voxels in insula with larger response magnitudes during rest period
when alone than when holding hand with friends.
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this effect is likely driven by the uncertainty participants are
experiencing while alone in the scanner, even during the rest period.

We have also fitted three existing methods – SFIR, Tik-GCV, and
the canonical method – to the data. Using the BH threshold with a
relatively high level of FDR 20%, we found that the three methods failed
to pick up any signal in any of the ROIs, with the percentage of selected
voxels being 0 in most cases. To better illustrate, Table 5 instead
presents the percentages of voxels whose response magnitudes during
the threat and rest cues were identified to be significantly different
under different hand holding conditions by the three methods using
1% significance level, without correction for multiple comparisons. It is
striking that even here the percentages of selected voxels are much
smaller than the nominal level in most cases. The poor performance of
these methods is likely due to the large variances which resulted from
the low SNR of the data. This is not surprising given that thesemethods
do not take into account the pooled sample information. Moreover,
the results suggest that the canonical form may not fit the underlying
HRFs well here. We acknowledge that the significant efficiency gain is
obtained at the cost of a modest increase in computation. Specifically,
for a ROI with around 6000 voxels, the spline method takes about
5 min using an R-2.15.2 program on a laptop computer with 2.50 GHz
CPU and 8 GB memory, while the other three methods in comparison
all take less than 40 s.

As pointed out by a reviewer, Fig. 3 implies significant activation
in the corpus callosum. Given the growing body of evidence on fMRI
activation in white matter (Fraser et al., 2012; Yarkoni et al., 2009),
the proposed method may have captured the white matter HRF in a
data-driven manner, and may have potential to be used for further
investigations of white matter and gray matter HRFs.

Conclusion

Within the framework of the GLM, we proposed a new semi-
parametric model that assumes the HRFs across subjects share a
common functional shape, while accounting for subject-specific mag-
nitudes and latencies. The nonparametric spline basis method was
employed to construct the common functional shape to accommo-
date the variation of HRF shapes across different regions and stimuli.
A fast-to-compute estimation strategy hinging on converting the
resulting GLM to a bilinear model has been provided.

Themain strength of the proposed approach lies in the simultaneous
modeling of population-wide common properties and subject-specific
characteristics of brain activity. The key assumption of subjects sharing
a common functional shape of the HRF for a fixed voxel is plausible due
to three properties of the HRFs: first, nearly all the HRFs in the literature
adopt a single-mode shape; second, peaks of the HRFs usually occur
between 5 s and 8 s; and third, all the HRFs satisfy the boundary

conditions, i.e., values of the HRF beyond the domain equal zero.
These properties virtually guarantee that the HRFs have a similar basic
shape, which enables us to “borrow” information across subjects and
sharpen our analysis. For example, even though the SNR is usually low
within each individual's data, stable and accurate estimates of the com-
mon HRF shape can be obtained by adding subjects. Moreover, once the
common HRF shape is determined, the number of free parameters of
the HRF for each combination of subjects and stimuli is reduced to
two-HR and TTP -whose variation in the population is easier to detect
than characteristics such as initial dip and undershoot. However, if the
research target is to evaluate initial dip and undershoot-which have a
complicated relationship with HR, TTP, and W—the proposed model
(2) may not be delicate enough.

Our estimation relies on first-order Taylor expansion. Its accuracy
depends on the closeness of the subject-specific latencies to zero.
When there is considerable variation in latency across subjects, setting
latencies to zero in the estimation procedure would lead to results with
a large bias. In such situations, with long enough observational time
for each subject, using higher-order Taylor expansions and estimating
the coefficients of the higher-order derivatives (instead of setting
them to zero) canmitigate this problem. As long as the latency variation
is within one experimental time unit, first-order Taylor expansion is
expected to provide reasonable estimates.

We used penalized spline smoothing to approximate the shape of
the HRFs, and the penalization parameter was chosen by minimizing
the estimated AMSE. Generalized cross-validation (GCV) is an alterna-
tive computationally efficient method for parameter selection. The pro-
posed algorithm and GCV have similar computational time, but they
have different estimation targets: the former is focused on estimating
population mean HRF, while the latter aims at obtaining the optimal
parameter for estimating each individual subject's HRFs.

We note that the HR estimates from the spline methods are no
longer independent across subjects, because the common HRF shape
is estimated using all the data. This is not of great concern because
variance in estimating a common HRF shape is generally small as
long as the sample size is large enough. In fact, more uncertainty is
attributed to estimating the subject-specific effects.

The splinemethod is developed for HRF estimation, and the resulting
estimates from data with multiple stimuli may not be optimal for
conducting hypothesis tests to identify voxels responsive to a specific
stimulus, or voxels reacting differentially under different stimuli. This
is because regularization can induce nonzero and unequal bias for the
HRFs of different stimuli. The same issue arises in other regularization-
based methods, such as SFIR and Tik-GCV. When the primary analysis
goal is to identify active voxels in multi-stimulus data, the kernel-
smoothed method proposed in Zhang et al. (2012) may be more
suitable.

Table 5
The percentages of ROI voxels identified by canonical, Tik-GCV, and SFIR methods with significantly different (at 1% significance level) response magnitudes to threat and rest
period under different hand holding conditions. ⋆ the number before “/” is the percentage of voxels having larger magnitude under the first condition than that under the second
condition; the number after “/” is the percentage of voxels having smaller magnitude under the first condition than that under the second condition.

Comp.
cond.

Method Threat % Rest %

dACC OFC Insula dACC OFC Insula

+/−⋆ +/−⋆ +/−⋆ +/−⋆ +/−⋆ +/−⋆

Alone vs Friend Canonical 0.1/0.7 0.1/1.1 0.0/0.8 0.1/0.0 0.1/0.8 0.0/0.5
Tik-GCV 3.9/0.0 0.3/0.2 0.2/0.2 5.1/0.0 0.4/0.3 0.8/0.0
SFIR 0.1/1.6 0.5/1.0 0.2/2.5 0.2/0.3 0.3/0.8 0.0/2.0

Alone vs Stranger Canonical 0.6/0.1 0.0/0.4 0.8/0.3 0.0/1.2 0.0/2.9 0.0/2.8
Tik-GCV 4.7/0.1 0.7/0.2 4.9/0.2 1.6/0.1 0.9/0.6 0.8/0.1
SFIR 0.1/1.5 0.1/1.3 0.2/1.3 1.2/0.3 0.4/0.5 1.0/1.0

Stranger vs Friend Canonical 0.1/0.7 0.3/0.8 0.1/1.7 0.8/0.0 2.1/0.0 0.7/0.0
Tik-GCV 0.4/0.2 0.4/0.6 0.2/1.0 1.2/0.0 0.7/0.4 0.3/0.1
SFIR 0.3/0.2 0.7/0.4 0.2/0.5 0.2/1.1 0.2/0.7 0.2/2.4
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Appendix AA.1. Evaluation of AMSE of âl;k

As the MSE of ∑n
i¼1 η̂ i=n for each i consists of bias and variance

two parts:
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we first derive the mean and variance of η̂ i. Note that the expectation
and variance are taken on every element of the vector. Under i.i.d. as-

sumption of εi in model (7), the OLS estimate of ηi, η̂
OLS
i ¼ Ωi

0

� �−1
Λ ′
iYi,

is an unbiased estimate of ηi with variance σi
2(Ω0

i )−1. Since η̂ i is linear

of η̂OLS
i : η̂ i ¼ Ωi

λ
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i ; we have the mean and variance of η̂ i as

follows:
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From above, the bias of η̂ i is given by ((Ωλ
i )−1Ω0

i − I3 + K ⋅ (L − 2))ηi,
whose accurate estimate is difficult to obtain in practice due to small
SNR of individual subject's data. Instead, we use sample-averaged
estimate η0 (usually with a small variance and bias) to replace each ηi,
leading to the bias estimate of∑n

i¼1 η̂ i=n as
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η0=n: ð11Þ

For the variance part in Eq. (10), σi
2 can be evaluated by σ̂ 2

i . How-
ever, due to the large variation of σi

2 across subjects, we usemedian of
σ̂ 2

i to replace each σi
2 for robustness, and obtain the variance estimate

of ∑n
i¼1 η̂ i=n as

Xn
i¼1

diag Ωi
λ

� �−1
Ωi

0 Ωi
λ

� �−1
� 	

σ̂ 2
=n2

: ð12Þ

Summing up the squared elements in Eq. (11) and elements in
Eq. (12) excluding those corresponding to the drifting terms, we
obtain the estimate of AMSE(λ).
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