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Nonlinearity in evoked hemodynamic responses often presents in event-related fMRI studies. Volterra series,
a higher-order extension of linear convolution, has been used in the literature to construct a nonlinear character-
ization of hemodynamic responses. Estimation of the Volterra kernel coefficients in these models is usually
challenging due to the large number of parameters.We propose a new semi-parametricmodel based on Volterra
series for the hemodynamic responses that greatly reduces the number of parameters and enables “information
borrowing” among subjects. This model assumes that in the same brain region and under the same stimulus, the
hemodynamic responses across subjects share a common but unknown functional shape that can differ in
magnitude, latency and degree of interaction. We develop a computationally-efficient strategy based on splines
to estimate themodel parameters, and a hypothesis test on nonlinearity. The proposedmethod is comparedwith
several existing methods via extensive simulations, and is applied to a real event-related fMRI study.

© 2014 Published by Elsevier Inc.
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Introduction

The existence of nonlinearities in evoked responses in blood oxygen
level-dependent (BOLD) fMRI, particularly in event-related designs, has
been widely recognized in the literature (e.g., Buxton et al., 1998;
Friston et al., 1998b, 2000; Miller et al., 2001; Soltysik et al., 2004;
Vazquez and Noll, 1998; Wager et al., 2005). The extent of nonlinearity
usually varies across brain regions and stimuli, and shorter intervals
between stimuli lead to stronger nonlinearity than longer ones
(Buckner, 1998; Dale and Buckner, 1997; Liu and Gao, 2000; Vazquez
and Noll, 1998). These nonlinearities are believed to arise from non-
linearities both in the vascular response and at the neuronal level, and
are commonly expressed as interactions among stimuli. Though the
importance of adjusting for nonlinear interactions in estimating hemo-
dynamic responses has been demonstrated (a compelling example is
given in Wager et al. (2005)), reliable quantification of nonlinearity is
challenging in practice. Two main types of nonlinear models for fMRI
have been developed: the dynamical Ballon model (Buxton and Frank,
1997; Buxton et al., 1998; Mandeville et al., 1999) and the Volterra
series based models (Friston et al., 1998b, 2000), the connection
between which is established in Friston et al. (2000). These models
are flexible in accommodating various interaction effects, but their
implementation is often hampered by model complexity. For instance,
the Volterra series models generally involve a large number of free
parameters, which pose difficulty in obtaining stable estimates due to
82

83

84

85
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semi-parametric nonlinear m
over-fitting and loss of power given limited available data. This
motivates us to propose a parsimonious semi-parametric Volterra series
model that enables efficient presentation and estimation of nonlinear-
ities in this article.

The Volterra series model is an extension from the general linear
model (GLM; Friston et al., 1995; Worsley and Friston, 1995), where
the observed BOLD time series for each voxel is modeled as the linear
convolution between the stimulus function and the unknown hemo-
dynamic response function (HRF). The GLM assumes linear time
invariant system, and thus is not applicable in the presence of significant
deviation from expected linear system behavior. The Volterra series, a
series of infinite sum of multidimensional convolutional integrals,
is essentially a higher-order extension of linear convolutions. For
simplicity, second-order Volterra series are most commonly used for
characterizing pairwise interactions between stimuli. Represented by
two-dimensional spline bases in a fully nonparametric manner
(Friston et al., 1998b), the second-order Volterra series is very flexible
to accommodate a variety of nonlinear hemodynamic behaviors across
different regions, stimuli and subjects. Moreover, under the spline
representation, the extended GLM based on Volterra series is converted
to a linear regression, the computation of which is straightforward. The
ensuing parameter estimates, however, have large variances, especially
when obtained from a single individual's data.

In Zhang et al. (2013), we proposed a semi-parametric HRF model
within the GLM framework for multi-subject fMRI data. By assuming
that for a fixed voxel and stimulus the HRFs share a common but
unknown functional shape, and differ in magnitude and latency
across subjects, this model allows for combining multi-subject data
information for HRF estimation. Thus, the estimation efficiency can be
odel for event-related fMRI, NeuroImage (2014), http://dx.doi.org/
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significantly increased in contrast to analyzing each individual subject's
data independently. We extend such “information borrowing” idea to
the second-order Volterra series model. Specifically, in addition to
using the semi-parametric HRF model, here we also assume that for a
fixed voxel and a pair of stimuli, their associated second-order Volterra
kernel has a common and unknown functional sphere, and differs in the
extent of interaction across subjects. We develop a computationally-
efficient strategy based on nonparametric spline expansions (De Boor,
2001; Eubank, 1988; Parker and Rice, 1985; Ruppert et al., 2003;
Wahba, 1990) to estimate subject-specific and population-common
characteristics. We also propose a hypothesis test on the sample
average of second-order Volterra kernel estimates for assessing popula-
tion interaction effect. Performance of the method is examined by both
simulations and a real fMRI study.

Section Materials and methods presents the new method:
SectionModel introduces the semi-parametric model based on Volterra
series; Section Spline-based estimation describes a new spline-basis-
based regularized estimation strategy for estimating the model
parameters and discusses the selection of functional basis and penalty
parameter; and Section Hypothesis testing on nonlinearity develops a
hypothesis test on nonlinearity. We then apply the proposed method
to a real event-related fMRI study in Section Real data example and
compare the method with several existing methods via simulations in
Section Simulations. Section Discussion concludes.

Materials and methods

Model

We adopt the standardmassive univariate approach; since the same
approach applies to each voxel, the subscript for voxel is omitted here.
For subject i (i = 1,⋯, n), let yi(t) for t = δ,⋯, T · δ be the observed
fMRI time series of a given brain voxel, where δ is the experiment
time unit when each fMRI scan is captured, usually ranging from 0.5
to 2 s. Also for subject i and stimulus k (k = 1,⋯, K), let vi,k(t) be the
known stimulus function which equals 1 if the kth stimulus evoked at
t(N0) in the experimental design for subject i, and 0 otherwise. The
Volterra series is an extension of the Taylor series representation of
the nonlinear system where the output of the nonlinear system
depends on the past history of the input to the system. Friston et al.
(1998b) proposed to use the second-order Volterra series to character-
ize nonlinearity in evoked hemodynamic responses as follows:

yi tð Þ ¼ di tð Þ � βi þ
XK
k¼1

∫m

0
hi;k uð Þ � vi;k t−uð Þdu

þ
XK

k1 ;k2¼1

∫m

0
Vi;k1k2

u1;u2ð Þ � vi;k1 t−u1ð Þ � vi;k2 t−u2ð Þdu1du2 þ εi tð Þ;

ð1Þ

where di(t) is a lower-order polynomial accounting for the low-
frequency drift due to physiological noise or subject motion in the fMRI
(Brosch et al., 2002; Luo and Puthusserypady, 2008; Smith et al., 1999);
hi,k(t) is the hemodynamic response function (HRF) corresponding to
the kth stimulus for subject i;Vi,k1k2(t1,t2) is the 2nd-order Volterra kernel
function that models the interaction between the hemodynamic
responses under stimuli k1 and k2 for subject i; m is a fixed constant
defining the domain of the HRF; and εi(t) is the error term. Following
a common practice in the literature, we adopt a 2nd-order polynomial
for the drifting term di(t) = (1, t, t2) with parameters βi = (βi,0,
βi,1, βi,2)′. Though it is possible to use higher order Volterra kernels,
we focus on the second order for simplicity. The height, time to peak,
and width of a HRF is commonly interpreted as magnitude, reaction
time, and duration, respectively, of subjects' neuronal activity in
response to stimuli. A typical HRF shape is shown in Fig. 4(a), having
Please cite this article as: Zhang, T., et al., A semi-parametric nonlinear m
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onset at the stimulus-evoked time, reaching peak between 5 and 8 s,
and declining afterward to the baseline (zero). Model (1) without the
term of the 2nd-order Volterra kernel is the GLM (Friston et al., 1995).
There is a vast literature on the estimation of the HRF hi,k(t), including
parametric methods (e.g., Friston et al., 1998a; Glover, 1999; Henson
et al., 2002; Lindquist and Wager, 2007; Lindquist et al., 2009; Riera
et al., 2004; Worsley and Friston, 1995) and nonparametric methods
(e.g., Aguirre et al., 1998; Bai et al., 2009; Dale, 1999; Lange et al.,
1999; Vakorin et al., 2007; Wang et al., 2011; Woolrich et al., 2004;
Zarahn, 2002). Estimation of Vi;k1k2

t1; t2ð Þ is more challenging than
that of the HRF, because the Volterra kernel function, defined on the
two-dimensional space, involves many more parameters, while the
number of observations, T, for each subject is usually limited.

Model (1) can be viewed as a special case of linear functional
models, with slope functions hi,k and interaction functions Vi,k1,k2. In
the neuropsychological studies we consider, the underlying slope
functions, the HRFs, vary across subjects in height, time to peak, and
width. Therefore, the common practice of assuming identical parameter
functions does not apply here. In fact, extracting subject-specific
characteristics is often one of the main goals in multi-subject fMRI
studies. To simultaneously model population-wide and subject-specific
characteristics of brain activity, and to “borrow information” across
subjects, we assume a semi-parametric form for both h and V:

hi;k tð Þ ¼ Ai;k � f k t þ Di;k

� �
; ð2Þ

Vi;k1k2
t1; t2ð Þ ¼ Mi;k1k2

� Vk1k2
t1; t2ð Þ; ð3Þ

where Ai,k, Di,k and Mi,k1k2 are unknown fixed parameters, representing
magnitude and latency of brain's reaction to the kth stimulus, and inten-
sity of the interaction between the k1th and k2th stimuli, respectively,
for subject i; fk(t) is the population average HRF corresponding to the
kth stimulus, and Vk1k2 is the population average interaction function
between the k1th and k2th stimuli. Model (3) assumes that the interac-
tion pattern between hemodynamic responses of a given pair of stimuli
is identical, but differs in intensity across subjects. No parametric
assumption except for differentiability is imposed on fk and Vk1k2. By
assuming that all the subjects have a common functional form of the
HRFs and their interactions, Models (2) and (3) greatly reduce the
number of parameters and also enable efficient information sharing
across subjects. Note that Model (3) does not account for interaction
effects on the onset and time to peak of hemodynamic responses,
which are generally too complicated to be quantified for a two-
dimensional function, whereas subject-specific interaction intensity is
much easier to interpret. Model (2) was previously proposed in Zhang
et al. (2013) in the context of GLM. When direct observations of hi,k(t)
are available, Model (2) is referred to as “shift and magnitude registra-
tion” by Ramsay and Silverman (2005). A similar shape-invariantmodel
for longitudinal data analysis has been also discussed in Lindstrom
(1995). In GLM, however, one needs to address the additional challenge
of deconvoluting hi,k(t) from the observed time series.

Spline-based estimation

We now develop a spline-basis-based regularized strategy to
estimate the parameters in the proposed model. Assuming that the
latency Di,k is smaller than the experimental time unit, we use a first-
order Taylor expansion to approximate Model (2), converting hi,k(t) to
a linear presentation in terms of subject-specific parameters Ai,k and
Di,k:

hi;k tð Þ ≈ Ai;k � f k tð Þ þ Ci;k � f
1ð Þ
k tð Þ; ð4Þ
odel for event-related fMRI, NeuroImage (2014), http://dx.doi.org/
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where Ci,k= Ai,k ⋅Di,k. Thenwe represent fk(t) by cubic B-spline bases: fk
(t) = ∑l=1

L akl ⋅ bl(t), where the basis functions bl(t) are chosen based
on a partition Λq = (t0 = 0, t1, ⋯, tq = m) of the interval [0, m].
Selection of the knots Λq is discussed later. Given the boundary condi-
tion that hi,k(0) = hi,k(m) = 0, we let a1k = aLk = 0.

Similarly, we represent the bivariate function Vk1k2 t1; t2ð Þ by cubic
spline bases:

Vk1k2
t1; t2ð Þ ¼

XL
l1 l2¼1

Zk1k2 l1l2
� bl1 t1ð Þ � bl2 t2ð Þ:

It is known that nonlinearity disappears if events are spaced at
least 5 s apart (Miezin et al., 2000), implying that Vk1k2 t1; t2ð Þ ¼ 0 for
|t1 − t2| ≥ 5. Using this fact and cubic spline bases with equally-
spaced knots, the number of free parameters can be reduced by letting
Zk1k2 l1 l2 ¼ 0 for |l1 − l2| ≥ 4 + 5/m ⋅ (L − 2). This fact also indicates
that some Vk1k2 's, whose associated pairs of stimuli are always more
than 5 s apart in the experiment, equal zeros in the model. Moreover,
in many event-related experiments, pairs of stimuli are separated at
certain values, implying that some values of Vk1k2 t1; t2ð Þ are not
observable. In this case, because the spline bases bl(t)'s only cover a
short period of the domain [0, m], some coefficients Zk1k2 l1 l2 are not
observable and should not be included in the model, which can further
reduce the number of free parameters.

LettingL2 = {(l1, l2) : 1≤ l1, l2≤ L; |l1− l2|≥ 4+ 5/m ⋅ (L− 2)} and
K2 ¼ k1; k2ð Þ :f there exists at least one (u1, u2)∈ (0,m)2 such that vi;k1
t−u1ð Þ ¼ vi;k2 t−u2ð Þ ¼ 1 for at least one subject i and |u1 − u2| b 5}.
The nonlinear functional Model (1) is transformed to the following
bilinear model:

yi tð Þ ¼ di tð Þ � βi þ
XK
k¼1

XL−1

l¼2

ωi;kl � ρi;kl tð Þ þ
XK
k¼1

XL−1

l¼2

ϕi;kl � ϱi;kl tð Þ

þ
X

k1 ;k2ð Þ∈K2

X
l1 ;l2ð Þ∈L2

νi;k1k2 l1 l2
� ψk1k2 l1l2

tð Þ þ εi tð Þ;
ð5Þ

whereωi,kl=Ai,k ⋅ akl,ϕi,kl=Ci,k ⋅ akl,νi;k1k2 l1 l2
¼ Mi;k1k2

� Zk1k2 l1 l2
, ρi,kl(t)=

∫
0

m
bl(u) ⋅ vi,k(t− u)du, ϱi,kl(t)= ∫

0

m
bl(u) ⋅ ui,k(t− u)du, andψk1k2 l1 l2

tð Þ ¼

∫m

0
∫m

0
bl1 u1ð Þ � bl2 u2ð Þ � vi;k1 t−u1ð Þ � vi;k2 t−u2ð Þdu1du2 are known func-

tions. Here subject-specific parameters Ai,k, Ci,k, akl, Mi;k1k2
, Zk1k2 l1 l2

are
not directly identifiable, but their products ωi,kl, ϕi,kl and νi;k1k2 l1 l2

are
unique. Therefore, the estimates of subject-specific HRFs and second-
order Volterra kernels are still unique. Notations of the key parameters
are listed in Table 1.
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Table 1
Notations of key parameters.

Parameter Description

di(t) A vector of known time-varying covariates
βi Coefficients of di(t)
Ai,k Subject-specific magnitude of the kth HRF
Di,k Subject-specific latency of the kth HRF
Mi;k1k2 Subject-specific degree of interaction between stimuli k1 and k2
akl Coefficients of the spline bases representing the kth common

function fk(t)
Zk1k2 l1 l2 Coefficients of the spline bases representing the 2nd-order Volterra

kernel Vk1k2 t1; t2ð Þ
Ci,k Product Ai,k ⋅ Di,k

ωi,kl Product Ai,k ⋅ akl
ϕi,kl Product Ci,k ⋅ akl
νi;k1k2 l1 l2 ProductMi;k1k2 � Zk1k2 l1 l2

ρi,kl(t) Known functions ∫
0

m
bl(u) ⋅ vi,k(t − u)du

ϱi,kl(t) Known functions ∫
0

m
bl
(1)(u) ⋅ vi,k(t − u)du

ψi;k1k2 l1 l2 tð Þ Known functions ∫
m

0
∫
m

0
bl1 u1ð Þ � bl2 u2ð Þ � vi;k1 t−u1ð Þ � vi;k2 t−u2ð Þdu1du2
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A standard approach to estimating parameters in a bilinear model is
through minimizing the mean squared error (MSE) of fMRI time series
via the alternating least squares (ALS) algorithm, an iterative optimizing
procedure. Iterative procedures often lead to slow convergence and
volatile estimates, particularly in the cases with a large number of
parameters and low signal-to-noise ratio. Therefore, below we propose
a new noniterative estimation strategy based on regularization:

Step 1. If the latency Di,k is close to zero, parameters ϕi,kl's should be
much smaller than ωi,kl's and have little effect on estimating
hi,k. Given this, we first omit the term ϕi,kl ⋅ ϱi,kl(t) involving
thefirst-order derivative of fk inModel (5) and obtain parameter
estimates β̂i; ω̂i;kl and ν̂i;k1k2 l1 l2 for each subject i, by minimizing
the penalized MSE (PMSE) of yi(t),

PMSEi ¼
XT �δ
t¼δ

yi tð Þ−di tð Þ � βi−
XK
k¼1

XL−1

l¼2

ωi;kl � ρi;kl tð Þ−
X
k1 ;k2

X
l1 ;l2

νi;k1k2 l1 l2
� ψi;k1k2 l1l2

tð Þ

24 352

þ λ
X
k

∫
X
l

ωi;kl � b
2ð Þ
l uð Þ

 !2

duþ
X
k1;k2

∬
X
l1 ;l2

νi;k1k2l1 l2 � b
1ð Þ
l1

u1ð Þ � b 1ð Þ
l2

u2ð Þ

0@ 1A2

du1du2

24 35:
ð6Þ

Step 2. Estimate fk(t) and Vk1k2
t1; t2ð Þ respectively by f̂ k tð Þ ¼

∑n
i¼1ĥi;k tð Þ=n and V̂k1k2

t1; t2ð Þ ¼ ∑n
i¼1V̂ i;k1k2

t1; t2ð Þ=n , where

ĥi;k tð Þ ¼ ∑L−1
l¼2 ω̂i;kl � bl tð Þ and V̂ i;k1k2

t1; t2ð Þ ¼ ∑l1 l2
ν̂i;k1k2 l1 l2

�
bl1 t1ð Þ � bl2 t2ð Þ.

Step 3. Given âkl ¼ ∑n
i¼1ω̂i;kl=n and Ẑk1k2 l1 l2

¼ ∑iν̂i;k1k2 l1 l2
=n from Step

2, re-evaluate Ai,k, Ci,k andMi;k1k2
through ordinary least square

regression (OLS) of Model (5).

Step 1 is equivalent to estimating each subject's HRFs and the 2nd-
order Volterra kernel in a fully nonparametric manner under spline-
basis representations: hi,k(t) = ∑l = 2

L − 1ωi,kl ⋅ bl(t), and Vi;k1k2 t1; t2ð Þ ¼
∑l1 ;l2νi;k1k2 l1 l2 � bl1 t1ð Þ � bl2 t2ð Þ. The penalty in PMSEi is used to regularize
the roughness of the nonparametric estimates. The analytic minimizer
of PMSEi is essentially a Tikhonov-regularized regression estimator,
because theMSE, the first term in Eq. (6), is quadratic of the parameters
βi;ωi;kl;νi;k1k2l1 l2

� �
and the penalty is quadratic of the parameters ωi,kl

and νi;k1k2 l1 l2 . We believe that the average of subjects' nonparametric
HRF estimates can approximate the population mean HRF shape well
in Step 2 for two reasons. First, the point-wise average of subjects'
HRFs is close to the population mean HRF shape, if the underlying
HRFs indeed follow the proposed semi-parametric model; second,
empirically we found that though individual subject's nonparametric
estimates may vary significantly in shape due to large data noise, the
shape of their average is generally stable.

In the literature knot or basis selection it is typically performedwith
direct observations of a single target function (Zhou and Shen, 2001),
whereas in our study we need to estimate multiple hi,k's and Vi;k1k2 's
simultaneously without any direct observations. For simplicity, we use
equally-spaced knots for both hi,k and Vi;k1k2 , and select a set of bases
from two choices—with knots separated by 1 and 1/2, respectively—by
a ten-fold cross-validation (TFCV) procedure. Distinct from the standard
approach, the TFCV here is carried out by dividing all subjects' fMRI data
into ten time periods of equal length instead of ten sub-samples. Specif-
ically, each time data in one period is removed, the model constructed
based on the of rest of the data is used to predict the left-out data, and
the overall prediction error summed up over ten periods is used as the
criterion for knot selection.

As for penalty parameter selection, available methods include
ordinary cross-validation (OCV), generalized cross-validation (GCV;
Wahba, 1990), GCV for functional data analysis by Reiss and Ogden
(2007, 2009), and restricted maximum likelihood (Wood, 2011),
amongmany others. In our case, since penalty parameter selection con-
founds knot selection, the two are performed together by the modified
TFCV above.
odel for event-related fMRI, NeuroImage (2014), http://dx.doi.org/
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Hypothesis testing on nonlinearity

To detect deviation from the linear time-invariant system, we pro-

pose an easy-to-implement test on estimated V̂k1k2 based on Hotelling's
T-squared distribution. Under normality assumption of the error
term or with long enough observation time T in Model (1), the

estimates v̂i;k1k2 ¼ v̂i;k1k2 l1 l2 ; l1; l2ð Þ ∈ L2
� �0

from Step 1 for each subject

i approximately follows a normal distribution N νi;k1k2 ;Δi
� �

, where the
variance–covariance matrix Δi depends on convolutions ρi,kl(t), ϱi,kl(t)
and ψi;k1k2 l1 l2 tð Þ, and σ i

2 = var(εi(t)). Assuming that across population

νi;k1k2 ∼ N μk1k2 ;Λ
� �

, where μk1k2 denotes the parameters for the popu-

lationmean interaction functionVk1k2 , then the population-wise v̂i;k1k2∼

N μk1k2 ;ϒ
� �

, where Υ is the variance and covariance matrix of v̂i;k1k2
across population. Then the test of nonlinearity is reduced to test
whether μk1k2 = 0.

To test the mean of independent and identically distributed multi-
variate (p-dimensional) Gaussian random variables, xi ∼i:i:d: N μ;Σð Þ, it is
standard to use the Hotelling's T-squared statistic, defined by

x−μð Þ0W−1 x−μð Þn n−pð Þ
n−1ð Þp ; with W ¼

Xn
i¼1

xi−xð Þ0 xi−xð Þ= n−1ð Þ;

which follows an F distribution with degrees of freedom p and n − p.
Based on this, we propose to test H0 : μk1k2

¼ 0 vs. HA : μk1k2
≠0 by

using the statistic

T 2 ¼
Xn
i¼1

ν̂i;k1k2
=n

 !0

ϒ̂−1 Xn
i¼1

ν̂i;k1k2
=n

 !
;

where ϒ̂ is the sample variance–covariance matrix of v̂i;k1k2 . We reject
the null hypothesis if T 2N F1−α

p;n−p, where Fp,n − p
1− α is the 1 − α percentile

of an F distribution with degrees of freedom p and n − p. In practice,
with many functional bases used to represent the kernel function
Vk1k2, however, p can be even larger than n, or comparable to n, leading
close to singular ϒ̂ and thus low detection power. To address this issue,
we use only a subset of (l1, l2) in ν̂i;k1k2 l1 l2

to significantly reduce p.
Specifically, we perform a test on equally spaced elements of ν̂i;k1k2 l1 l2

,
given that Vk1k2 is smooth and νi;k1k2 l1 l2

's corresponding to spatially-
close regions usually have similar values. Simulations in
Section Simulations shows that such a test has a high power with type
I error preserved at the specified significance level.

Results

Real data example

Data
We analyze the fMRI data collected from the Monetary Incentive

Delay (MID) Experiment,whichmeasures subjects' brain activity related
to reward and penalty processing (Knutson et al., 2000). In this experi-
ment, 19 subjects (10 male, 9 female) between 22 and 25 years of age
were recruited from a larger representative longitudinal community
sample (Allen et al., 2007).

In the MID task, each participant completed a protocol comprised of
72 6-second trials involving either no monetary outcome (control/
neutral task), a potential reward (reward task), or a potential penalty
(penalty task). The fMRI scans were acquired at every 2 s (TR), leading
to T = 219 frames of data for each subject. In each trial, participants
were first shown a cue shape for 500 ms (anticipation condition), then
waited a variable interval of between 2500 and 3500 ms, and were
shown awhite target square lasting between 160 and 260ms (response
condition). The cue shape (circle, square or triangle) shown at the start
Please cite this article as: Zhang, T., et al., A semi-parametric nonlinear m
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of each trial signals the type of the trial (reward, penalty or no incentive)
to be implemented, and the white target shown at the end of each trial
indicates button press from the participants, who were also told that
their reaction times would affect the amount of money they receive in
the monetary reward trial or lose in the penalty trial. In total, there
were six stimuli involved in the experiment: three signal stimuli for
the three types of monetary outcomes and three response stimuli to
which the participants were required to respond. The six stimuli are
henceforth referred to as neutral signal, reward signal, penalty signal,
neutral response, reward response, and penalty response. The order of
trials in the protocol for each participant was randomized, with 25% of
them control trials, 37.5% reward trials, and 37.5% punishment trials.
During the experiment, we used a Siemens 3.0 T MAGNETOM Trio
high-speed magnetic imaging device at UVA's Fontaine Research Park
to acquire fMRI data,with a CP transmit/receive head coilwith integrated
mirror. Two hundred twenty-four functional T2*-weighted Echo Planar
images (EPIs) sensitive to BOLD contrast were collected per block, in
volumes of 28 3.5-mm transversal echo-planar slices (1-mm slice
gap) covering the whole brain (1-mm slice gap, TR = 2000 ms, TE =
40 ms, flip angle = 90°, FOV = 192 mm, matrix = 64 × 64, voxel
size = 3 × 3 × 3.5 mm). More details of the experimental design,
fMRI data acquisition and preprocessing can be found in Zhang et al.
(2012).

Statistical analysis and discussion
We apply the proposed methods to four regions of interest (ROI):

right putamen (2144 voxels), right amygdala (1587 voxels), right
pallidum (1246 voxels), and right caudate (2504 voxels). These were
determined structurally using the Harvard subcortical brain atlas, and
were chosen for their likely involvement in affective neural processing
based on previous studies (e.g., Knutson et al., 2000). For each voxel,
we include in Model (1) six HRFs corresponding to the six stimuli. For
each of the three tasks (neutral, reward and penalty), we use a 2nd-
order Volterra kernel to characterize the interaction between the corre-
sponding signal and response stimuli. Using the proposed noniterative
estimation strategy, we evaluate the HRFs and their interactions. Statis-
tical significance of the nonlinear term is tested using the Hotelling's
T-squared test in Section Hypothesis testing on nonlinearity.

Fig. 1 displays the heat maps of P-values (P-values above 0.2 are not
shown) of ROI voxels in testing interactions between signal and
response stimuli. No significant interaction pattern is identified in
right caudate and right amygdala, and thus the related results are
omitted. There is almost no interaction between neutral signal and
response stimuli across all the ROIs, which is intuitive, because neutral
signal stimulus indicates that the following response is not required
and does not affect any final gain. The most significant interaction is
between monetary penalty signal and response stimuli, especially in
the right putamen and right pallidum. Table 2 summarizes the percent-
ages of voxels identified to be significant in the test of interaction
between reward and penalty stimuli in these two regions at different
significance thresholds. We used the empirical Bayes approach by
Efron (2008) to evaluate the false discovery rates of the multiple
hypothesis testing. An alternative approach is to use Benjamini–
Hochberg (BH) threshold (Benjamini and Hochberg, 1995) to control
for the false discovery rate (FDR) at different rates. Since the signal
and response stimuli are not closely presented with inter-stimulus-
interval (ISI) ranging from 2.5 s to 3.5 s, the interaction effect is not as
intense as those with ISIs for no more than 1 s. In addition, the power
of detecting nonlinearity is further diminished by the small sample
size and large noise of fMRI data, and thus there are moderate FDRs in
themultiple hypothesis tests of voxels. Nevertheless, a large proportion
of voxels were still detected with significant interactions in the penalty
task. In contrast, there is little interaction detected under the reward
task. The reasons that interactions between negative signal and
response stimuli are most prominent, and they are mainly in the right
putamen and right pallidum are two-fold. First, the putamen and
odel for event-related fMRI, NeuroImage (2014), http://dx.doi.org/

http://dx.doi.org/10.1016/j.neuroimage.2014.04.017
http://dx.doi.org/10.1016/j.neuroimage.2014.04.017


E
C
T
E
D
 P

R
O

O
F

402

403

404

405

406

407Q9

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

Right Putamen

a) Neutral b) Reward c) Penalty

Right Pallidum

d) Neutral e) Reward f) Penalty

3.
5

−Log10 P−value

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0
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pallidum are both regions of the basal ganglia, a subcortical network
that is involved in, among other things, voluntary control of motor
movements. Activation of these areas during signal presentation
suggests preparatory motor activity in anticipation of the response
cue. Second, such activation is more prominent in the penalty task
which is not surprising, given the large body of work in psychology
indicating that individuals react more strongly to negative stimuli than
to positive stimuli (e.g., Baumeister et al., 2001). For example, brains
are generally more active under negative stimuli (Cacioppo et al.,
1997) and negative interactions more strongly define our attitudes
about relationships (e.g., Gottman, 1994; Huston and Vangelisti, 1991).

To inspect the interaction effects, for each voxel with a P-value
smaller than 5% in the right putamen and pallidum, we calculate the
averaged 2nd-order Volterra kernel estimates across time and subjects,
430

431

432

433

434

435

436

437

438

439

440

Table 2
The percentages and associated false discovery rates (FDR, in parentheses) of voxels
identified in the ROIs by the test on nonlinearity at different significance levels.

Significance level Right putamen Right pallidum

(FDR) (%) Reward Penalty Reward Penalty

5% 7.4 20.7 5.6 13.8
FDR (67.7) (24.1) (89.0) (36.2)
10% 18.1 33.4 12.4 23.5
FDR (55.3) (30.0) (80.4) (42.5)

Please cite this article as: Zhang, T., et al., A semi-parametric nonlinear m
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∑i∑t1∑t2 V̂ i;k1k2 t1; t2ð Þ= n �m2� �
, histograms of which are presented in

Figs. 2(a) and (c). To give a more explicit view of the detected nonline-
arity, Figs. 2(b) and (d) respectively shows the estimated population
mean V̂k1k2 t1; t2ð Þ of the voxel with the most significant nonlinear
behavior in the two regions. The color scale is arbitrary; light yellow is
positive, and dark red is negative. Since intervals between consecutive
stimuli in this experimental design are between 2 and 4 s, nonzero
values of Vk1k2 t1; t2ð Þ only appear in the off-diagonal band where
|t1 − t2| is between 2 and 4 s, and the values at other points are not
observable. The interactive effect of penalty tasks, especially in the
right putamen, tends to be negative. One possible explanation is that
the signal stimulus prepares the subjects for the response, leading to
less intensive reactivity when response stimulus is presented. Such a
negative interaction effect was also reported in Friston et al. (1998b).
In terms of data analysis, the magnitude of the HRF would be
underestimated if significant nonlinearity in the underlying hemody-
namic responses exists but is not taken into account in the estimation.

Fig. 3 displays the estimated populationmean HRF fk (dark line) and
individual HRF hi,k (broken lines) of several randomly selected subjects
for the voxel in the right putamen that has themost significant interac-
tion of the penalty task. The effect of “borrowing” information across
subjects can be clearly seen here as f̂ k is much less variant than the
ĥi;k 's, though they share a similar shape, for each of the six stimuli. In
general, the response stimuli evoked stronger and stabler activity across
subjects than the signal stimuli, since subjects' response affected the
odel for event-related fMRI, NeuroImage (2014), http://dx.doi.org/

image of Fig.�1
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signal stimulus has a large variation across subjects. Such findings are
in keeping with previous work indicating that passive viewing or
“resting” generally produces noisier data than those that require a
response from subjects. One model suggests that this “noise” may be a
product of interactions between individual differences in cognitive
and affective styles with uncontrolled portions of the experiment
(Coan et al., 2006). So while the response cue elicits the same motor
response from everyone (and thus a more coherent neural response),
passive cue viewing may elicit similar, but relatively less coherent
mental actions.

Simulations

Simulation design
We conduct simulations to further examine the properties of the pro-

posed semi-parametric model in HRF estimation and also to compare
with four existing methods: the linear semi-parametric model for HRF
Please cite this article as: Zhang, T., et al., A semi-parametric nonlinear m
10.1016/j.neuroimage.2014.04.017
without the 2nd-order Volterra kernels proposed by Zhang et al. (2013),
referred to as the linear spline-based method; a parametric approach
representing HRF by a linear combination of canonical HRF and its first
derivative, called canonical method hereafter; nonparametric Tikhonov-
regularized estimate with penalty parameter selected by generalized
cross validation (Tik-GCV, Casanova et al., 2008); and nonparametric
smooth finite impulse response (SFIR) method (Goutte et al., 2000).

We generate time series data using the experimental design identi-
cal to that in the MID experiment with six stimuli for n = 19 subjects
and three interaction effects. The HRFs hi,k(t) follow Model (2) with
the population mean HRF fk being a mixture of two gamma functions
that have the same mathematical expression as the canonical HRF
(Worsley and Friston, 1995):

f k tð Þ ¼ b
a1;k
1;k

ta1;k−1 � e−b1;kt

Γ a1;k
� � −ck � b

a2;k
2;k

ta2;k−1 � e−b2;kt

Γ a2;k
� � ; k ¼ 1;…;6: ð7Þ
odel for event-related fMRI, NeuroImage (2014), http://dx.doi.org/
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By assigning different values to the parameters, the six fk's have
distinct shapes. The parameters for the six HRFs are given in Table 3,
and several simulated HRFs for each stimulus are displayed in Fig. 4.
The first two HRFs follow a canonical shape, but differ in the range of
variation in latency. The third and fourth HRFs have distinct shapes
from the canonical one, but still follow the proposed semi-parametric
model. The last two HRFs violate the model assumption, having a
large variation both in latency andmagnitude. Tomimic theMID exper-
iment, we consider three types of nonlinearity, respectively character-
ized by three second-order Volterra kernels:

V1;4 t1; t2ð Þ ¼ 8 exp t1=1500þ t2=1000j jf g;

V2;5 ¼ 2 exp − t1=1500−t2=1000j jf g;V3;6 ¼ 0;

for |t1 − t2| ≤ 3.5 and t1 ≤ 8, and the kernels equal zero at the rest of
(t1, t2). These kernels are chosen such that their values are close to
zero at the boundary of domain |t1 − t2| ≤ 3.5, beyond which very
few observations are available. The associated subjects' intensities of
interaction, Mi,14 and Mi,25 are generated from uniform distributions
with ranges (−200,−100) and (−150,−100), respectively, to repre-
sent negative interactions observed in many practical cases.
U

503503

504

505

506

507

508

509

510

511Q10

512

Table 3
Parameters of the simulated HRFs hi,k, where U(a, b) denotes uniform distribution defined
on interval (a, b), and N(μ, σ2) denotes normal distribution with mean μ and variance σ2.

HRF k Aik Dik a1,i a2,i b1,i b2,i c

1 N(700, 3002) U(−1.5,1.0) 6 16 1 1 1/6
2 N(500, 2002) U(−1.0,1.0) 6 16 1 1 1/6
3 N(400, 1502) U(0.0,4.0) 19 20 2 2 2/3
4 U(500, 1500) U(1.0,4.0) 20 22 2 2 9/10
5 U(100, 500) U(−3.0,0) U(6,8) U(15,18) U(1,3) U(1,3) 1/6
6 U(100, 500) U(−2.0,1.0) U(18,22) U(9,25) U(3,4) U(3,4) 1/4

Please cite this article as: Zhang, T., et al., A semi-parametric nonlinear m
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EThe error terms εi = (εi(1), …, εi(T))′ are simulated from an auto-
regressive model of order 4 (AR(4)) with lag − 1 correlation of 0.45
and lag − 2 correlation of 0.35:

εi tð Þ ¼ 0:37εi t−1ð Þ þ 0:14εi t−2ð Þ þ 0:05εi t−3ð Þ þ 0:02εi t−4ð Þ þ ei tð Þ;

where ei tð Þ ∼i:i:d N 0;σ2
i

� �
. To reflect the heteroscedastic variances across

subjects, we let σi
2 vary across subjects, following Ga(2,1/25) + 50 so

that generated data have aweak signal-to-noise ratio. For each simulated
example below, we first generate hi,k, Vi,k1k2 for i = 1,⋯, n, k = 1,2,⋯, 6
and (k1, k2) ∈ {(1, 3), (2, 4), (3, 6)}, and random second order poly-
nomials di(t)βi with, βi,1 ∼ U(−0.1, 0.1), βi,2 ∼ U(−0.05, 0.05) for
each i. Then based on these, yi(t) is simulated given the design and
the stimulus functions.

We use the root mean square error (RMSE) of subjects' HRF
estimates and average relative errors (ARE) of the height (HR) of the
estimated HRFs as the criterion for comparison:

e HRkð Þ ¼ 1
n

Xn
i¼1

HRi;k−cHRi;k

��� ���
HRi;k

; RMSEk ¼
1
n

Xn
i¼1

hi;k−ĥi;k
��� ���

hi;k
�� �� ;

where ‖ ⋅ ‖ is the L2 norm.

Analysis and results
Weevaluated the type I and type II errors of the proposedhypothesis

tests on nonlinearity, and showed the histograms of P-values in testing
values of V1,4, V2,5, and V3,6 in Fig. 1. For zero interaction in the case of
V3,6, the histogram of P-values is close to be flat, indicating that the
type I error of the test is preserved at the specified level. As shown in
Figs. 5(a) and (b), the test on V1,4 has a power close to one with all the
P-values strictly less than 1%. The test on V2,5 though has a smaller
power due to its smaller value and still detects nonlinearity 36 times
out of 100 simulations with threshold at 5%.
odel for event-related fMRI, NeuroImage (2014), http://dx.doi.org/
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Table 4 summarizes the ARE of HR and RMSE of the six HRFs
obtained from the fivemethods, where the cubic-spline-basedmethods
use knots equally separated by 2 unit time. Among these methods, the
proposed nonlinear model generally performs the best with reasonably
small errors both in estimating functional shape and HR, the linear
spline model is the second best, followed by the SFIR and Tik-GCV,
while the canonical method performs the worst, even when the under-
lying HRFs follow the canonical form (HRFs 1–2). This is not surprising
given that the proposed nonlinear model is the only method that
accounts for the interactions between stimuli. However, in terms of
estimating a single value HR, the nonlinear and linear models have
comparable performance, though the former recovers the entire curve
with a much smaller error. This is probably because with the large
variation of the fMRI data, the variation of the maximum value of the
HRF estimates under the linear and nonlinear models is comparable,
though the locations of maximum can vary significantly. The
underperformance of the canonical method, especially for HRFs 3–6, is
likely due to the huge overall model fitting error coming from the
misspecified functional shapes of the HRFs.
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EDiscussion

We proposed a semi-parametric nonlinear characterization of
hemodynamic responses for multi-subject fMRI data based on the
Volterra series. The new model is flexible to accommodate variation of
brain activity across different stimuli and voxels, and allows “borrow-
ing” information across subjects to increase estimation efficiency.
Using first-order Taylor expansion and spline basis representation, the
nonlinear model is converted to a bilinear one, for which we developed
a fast noniterative estimation strategy. Applying the proposed method
to the event-relatedMID study, we identified a deviation from the com-
monly assumed linear time-invariant system in various brain regions
due to interactions between stimuli. Through Monte Carlo simulation,
we also showed that the proposedmethod outperforms several existing
methods for HRF estimation when the nonlinear effect is significant.

It is natural to extend the information-borrowing idea to spatial
context, that is, information can be borrowed from neighboring voxels.
In fact, spatial information has been taken into account in the pre-
processing stage of fMRI data analysis, which usually involves spatial
value Pvalue
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t4:1 Table 4
t4:2 MeanAREs for estimatingHRandRMSEof the simulatedHRFs from the simulated example
t4:3 by different methods, where the spline-based methods use knots equally spaced by 1.

HRF Spline-based strategies Can. Tik-GCV SFIRt4:4

k Nonlinear Lineart4:5

RMSE 1 2.16 10.17 8.34 7.34 3.56t4:6

2 1.87 4.18 9.38 4.50 2.93t4:7

3 4.50 4.76 13.48 11.76 8.12t4:8

4 2.16 3.67 12.16 7.08 4.18t4:9

5 1.69 2.89 8.23 4.08 2.18t4:10

6 1.84 2.64 10.56 5.17 2.37t4:11

e(HR) 1 3.41 3.62 29.87 5.09 29.87t4:12

2 2.84 1.98 10.58 3.30 10.58t4:13

3 6.29 10.02 6.33 32.45 6.33t4:14

4 0.92 0.80 10.72 1.77 10.72t4:15

5 0.63 0.80 7.07 1.09 7.07t4:16

6 0.68 0.78 7.37 1.26 7.37t4:17
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smoothing. Consequently, the fMRI time series at spatially-close voxels
usually have similar values and the resulting parameter estimates for
spatially-close voxels are very similar. In the analysis stage, it is possible
to conduct another step of spatial smoothing over the estimates from
the proposed model using existing methods in the literature. For
example, Polzehl and Spokoiny (2000) developed a locally adaptive
weight smoothing method for imaging denoising and enhancement in
univariate situations where each data point associated with each
image pixel/voxel can bewell approximatedby a local constant function
depending only on the spatial location of the pixel/voxel. Li et al. (2011)
extended this approach further and developed multiscale adaptive
regression models for multi-subjects' vectors of image measurements.
This method integrates imaging smoothing with spatial data analysis
of the smoothed data. Arias-Castro et al. (2012) characterized the
performance of nonlocal means and related adaptive kernel-based
image denoising methods by providing theoretical bounds on the
estimation errors of these methods, which depend on the number of
observedpixels and the underlying imaging features. Readers are referred
to Yue et al. (2010) for amore detailed overview of smoothingmethods
used in the neuroimaging literature.

A nontrivial number of parameters are usually required to
characterize nonlinearity, which may substantially increase the vari-
ance of the estimates and thus reduce power of detecting activation
when the sample size is small. On the other hand, when strong nonlin-
ear effects present, our simulations show that estimation of the
additional nonlinearity parameters does not undermine estimation of
the HRFs, and in fact, ignoring them introduces large bias in the HRF
estimates. Our approach to this bias-variance tradeoff is to limit the
number of functional bases (and thus the number of free parameters)
representing subject-specific HRFs and the 2nd-order Volterra kernel.
Through simulations, we found that our approach is the most efficient
when (1) the nonlinear effect is strong, and/or (2) the sample size is
large, and/or (3) the number of parameters characterizing interactive
effects is small. For example, in the MID application, only a small area
of Vk1k2 was observed, which significantly reduced the number of free
parameters. Consequently, the proposed nonlinear model performed
well though three different types of interactions were modeled. More
generally, in studies where a considerable number of pairs of interac-
tions are modeled, estimation errors can still be reduced by utilizing
the prior knowledge of the small domain of Vk1k2 . As a practical guide-
line, we recommend to model nonlinearity only when the interaction
effect is of interest, or is expected to be strong (e.g., in event-related
designs with short ISIs).

In our estimation strategy, we only impose regularity on the 1st-
order derivatives of the two arguments of Vi;k1k2 t1; t2ð Þ , without
assuming high-order differentiability; estimation errors of the model
may be further reduced by imposing a different roughness constraint.
Moreover, different penalty parameters can be considered for rough-
ness constraints on HRF and Volterra kernels.
Please cite this article as: Zhang, T., et al., A semi-parametric nonlinear m
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We neglect the variation of interaction effect on response latency
across subjects in our model for Vi;k1k2 for simplicity and easy interpre-
tation. With sufficient data, it is possible to evaluate such subject-
specific interaction effect on latency by, for instance, the following
semi-parametric Volterra series model, eVi;k1k2 t1; t2ð Þ ¼ Mi;k1k2 � Vk1k2
t1; t2 þ Li;k1k2
� �

for t2 N t1, where Li;k1k2 characterizes the subject-specific
latency change. Similar to the estimation of the latency coefficient Di,k

in the HRF hi,k(t), we can use a first-order Taylor expansion to approxi-
mate and simplify the estimation:

eVi;k1k2
t1; t2ð Þ ≈ Mi;k1k2

� Vk1k2
t1; t2ð Þ þMi;k1k2

� Li;k1k2 � V
0;1ð Þ
k1k2

t1; t2ð Þ;

where the superscripts (0, 1) stand for the first order partial derivative
on t2. Based on spline representations of Vk1k2 and fk, we can also use a

noniterative procedure to estimate eVi;k1k2
t1; t2ð Þ: first estimate fk and

Vk1k2
through the same Steps 1–2; then evaluate subject-specific param-

eters Ai,k, Di,k,Mi;k1k2
and Li;k1k2 by the OLS estimates given the estimated

fk and Vk1k2
. We can impose ∑iLi;k1k2 ¼ 0 to avoid identifiability issue.

Under this restriction, if the interest is mainly on the extent of interac-
tion, it is reasonable to use the model for Vi;k1k2

t1; t2ð Þ proposed in the
article, where subject-specific interaction effects on latency, with zero
means, are incorporated into the error terms.

Higher-order, say 3rd-order, Volterra kernels can in principle be
used for evaluating interactions between more than two stimuli. For
the experiment with inter-stimulus interval larger than 2 s, however,
this may not be beneficial because: first, the ensuing model will be
overly complicated; second, biologically high-order interactions most
likelywill be negligible in comparison to lower-order ones if the interval
between nonconsecutive stimuli is larger than 4 s.
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