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The brain is a high-dimensional directed network system as it con-
sists of many regions as network nodes that exert influence on each
other. The directed influence exerted by one region on another is re-
ferred to as directed connectivity. We aim to reveal whole-brain di-
rected networks based on resting-state functional magnetic resonance
imaging (fMRI) data of many subjects. However, it is both statistically
and computationally challenging to produce scientifically meaningful
estimates of whole-brain directed networks. To address the statistical
modeling challenge, we assume modular brain networks, which re-
flect functional specialization and functional integration of the brain.
We address the computational challenge by developing a variational
Bayesian method to estimate the new model. We apply our method
to resting-state fMRI data of many subjects and identify modules and
directed connections in whole-brain directed networks. The identified
modules are accordant with functional brain systems specialized for
different functions. We also detect directed connections between func-
tionally specialized modules, which is not attainable by existing net-
work methods based on functional connectivity. In summary, this pa-
per presents a new computationally efficient and flexible method for
directed network studies of the brain as well as new scientific findings
regarding the functional organization of the human brain.

1. Introduction. The brain is a high-dimensional directed network system as it
consists of many regions as network nodes that exert influence on each other. We
refer to the directed influence exerted by one region on another as directed connec-
tivity (also called effective connectivity (Friston, 2011)). Identifying directed connec-
tions between all the regions and revealing the whole-brain directed network are
essential to understanding the functional organization of the brain. However, it is
both statistically and computationally challenging to produce brain network esti-
mates that are scientifically meaningful because of the enormous numbers of po-
tential directed connections and possible patterns of the directed network between
many network nodes. To address this challenge, we propose a new directed network
model that incorporates the principles of the functional organization of the brain.

The functional organization of the brain is governed by two principles: functional
specialization and functional integration (Friston, 1994). The former indicates that
different brain areas are specialized for different brain functions, while the latter
suggests different brain areas interact with each other to process information and
perform various functions. Enormous brain networks studies (Meunier et al., 2009;
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Sporns and Betzel, 2016; Park and Friston, 2013) have suggested that the modular or-
ganization (also called modularity) of networks is tied with functional specialization
and integration. Specifically, the brain network comprises modules of brain regions,
whose connections with regions in the same module are stronger and denser than
connections with regions in different modules. Brain regions in the same module
tend to be specialized for the same or similar functions. Directed connections within
and between modules ensure integration among different functionally specialized
brain areas. Because modular networks have been widely reported in the literature
to reflect the brain’s functional organization (Fodor, 1983; Sporns, 2013), we assume
whole-brain directed networks to have a modular organization. The goal is to iden-
tify modules as well as directed connections in whole-brain directed networks using
resting-state functional magnetic resonance imaging (fMRI) data of a large number
of subjects. We use fMRI data because they provide non-invasive measurements of
the activity of the entire human brain with a high spatial resolution (Lindquist, 2008).

We recognize multiple challenges in simultaneously identifying directed connec-
tions and modules in whole-brain directed networks based on fMRI data of a large
number of subjects. First, it is difficult to find a “perfect" model that can accurately
characterize the complex interactive relationship between many regions for many
subjects due to the limited understanding of the brain’s functional organization.
Therefore, a model for the whole-brain directed network inevitably has a model er-
ror, i.e., the deviation of the assumed model from the true network. Second, brain
network structures vary across subjects (Mennes et al., 2010; Moussa et al., 2012).
Third, fMRI data have a high degree of noise (Lindquist, 2008), bringing an ad-
ditional difficulty to the network analysis. Fourth, analysis of massive fMRI data
and simultaneous identification of brain modules and directed connections for many
subjects can be computationally intensive. Existing approaches address part of these
challenges, as explained in detail below.

Most information theoretic measures, such as cross-correlations (Kramer, Ko-
laczyk and Kirsch, 2008; Schiff et al., 2005), cross-coherence (Schröder and Ombao,
2018), transfer entropy (Vicente et al., 2011), directed transinformation (Hinrichs,
Heinze and Schoenfeld, 2006), directed information (Liu and Aviyente, 2012), and
many others (van Mierlo et al., 2013; Wilke, Worrell and He, 2011), quantify pairwise
connectivity between regions and cannot be directly used to identify modules. Pop-
ular models such as dynamic causal modeling (DCM, Friston, Harrison and Penny,
2003; Frässle et al., 2018) and neural mass models (David and Friston, 2003) char-
acterize directed connectivity but not modules. Methods such as independent com-
ponent analysis (van de Ven et al., 2004; Calhoun and Adali, 2012; Mejia et al., 2020)
and spectral clustering (Craddock et al., 2012) are effective in identifying modules or
functional systems in the brain. However, because these methods are based on func-
tional connectivity (i.e., statistical associations between activity in different regions
(Friston, 2011)), they cannot provide information about the direction of connectivity
between regions or the existence of directed connectivity between modules. Overall,
existing brain network studies identify modules (Sporns and Betzel, 2016; Sporns,
Honey and Kötter, 2007) and directed connections (Friston, 2011; Chiang et al., 2017;
Kook et al., 2020) separately with different approaches, resulting in two different and
hard-to-track errors in the estimated directed network. Despite the recent develop-
ment of models (Zhang et al., 2015, 2017, 2019; Li et al., 2021) to characterize both
directed connectivity and modules in the human brain, these models are for single-
subject analysis, and the estimation of these models based on fMRI data of many
subjects is computationally infeasible.
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To address limitations in existing directed network analysis, we develop a new
Bayesian model for whole-brain directed networks of many subjects. At the sub-
ject level, we use a multivariate autoregressive state-space (MARSS) model for fMRI
data of each subject, because the MARSS has the properties of robustness and flexi-
bility in approximating various network systems (Li et al., 2021). At the population
level, we assign a mixed-membership stochastic blockmodel (MMSB) as a prior for
all the subjects’ MARSS parameters that denote directed connections. The use of
the MMSB prior enables brain network estimates to have the modular organization.
That is, connections between regions in the same modules are much denser than
connections between regions in different modules. The use of the MMSB prior also
allows for each region to be in different modules and have different directed con-
nections in different subjects’ brain networks, and accommodates the variation of
directed brain networks across subjects. Overall, the proposed Bayesian model pro-
vides a flexible and robust framework for combining fMRI data of many subjects
to characterize brain networks in modular organization. Thus, the Bayesian model
enables us to address the first three challenges in directed network analysis of many
subjects’ fMRI data.

We address the computational challenge in analyzing fMRI data of many sub-
jects by developing a variational Bayesian method to estimate the proposed Bayesian
model. Through both simulation and real data analysis, we show that our new vari-
ational method is able to identify the whole-brain directed network with both com-
putational efficiency and estimation accuracy. As far as we know, this is the first
method that can identify brain modules and directed connections simultaneously
and reveal whole-brain directed networks for many subjects.

We applied our method to all four resting-state fMRI runs of all subjects (995 sub-
jects) from the Human Connectome Project (Van Essen et al., 2013, HCP). Specifically,
we divided the entire resting-state fMRI data into two sets, each consisting of two
fMRI runs collected on two separate days for each of 995 subjects. We analyzed the
two fMRI data sets independently. Modules identified by our method are consis-
tent with known brain functional systems with different specialized functions, such
as visual, default mode, auditory, cingulo-opercular task-control systems, and many
others. Our method also identified directed connections between the somatosensory-
motor and auditory modules and between the cingulo-opercular task control and
salience modules. Moreover, we evaluated the reproducibility of our method by tak-
ing advantage of multiple fMRI runs for each subject. We showed that brain network
results from independent analysis of two fMRI data sets are highly similar with over-
lap coefficients above 80%.

The rest of the article is organized as follows. In Section 2, we introduce the
MARSS model for multiple resting-state fMRI runs of multiple subjects. We then pro-
pose a new Bayesian hierarchical model that uses the MMSB as a prior for MARSS
parameters. In Section 3, we develop a variational Bayesian approach to estimate
the new Bayesian model. In Section 4, we examine the robustness and effectiveness
of the proposed method compared to existing network methods through a simula-
tion study. Section 5 presents the analysis results of resting-state fMRI data of many
subjects. Section 6 concludes with a discussion.

2. The Directed Brain Network Model. We propose a directed network model
for fMRI data fromL runs in d regions of S subjects. In the real data analysis, we used
the functional atlas in the literature (Power et al., 2011) to divide the entire brain into
d= 264 non-overlapping functional regions. These regions span the cerebral cortex,
the cerebellum, and subcortical structures.
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2.1. The Multivariate Autoregressive State-Space Model. Let ys,l(t) = (ys,l1 (t), . . . , ys,ld (t))′

be fMRI measurements in d brain regions (i.e., d network nodes of the whole-brain
directed network) at time t from the lth fMRI run of subject s for s = 1, . . . , S,
t = 1, . . . , T and l = 1, . . . ,L. Each data point, ys,lj (t), is an average of fMRI data
of all voxels in region j at time t in the lth run for subject s. Each time se-
ries, {ys,lj (1), . . . , ys,lj (T )}, is standardized to have mean zero and variance one. Let
xs,l(t) = (xs,l1 (t), . . . , xs,ld (t))′ be the state functions of the d brain regions at time t in
the lth run of subject s. The state function, xs,l(t), represents the brain activity in d
regions at time t in the lth fMRI scan for subject s. We model directed connections be-
tween the d regions of each subject s using a multivariate autoregressive state-space
model (MARSS):

ys,li (t) = cs,li · x
s,l
i (t) + εs,li (t), i= 1, . . . , d, s= 1, . . . , S, l= 1, . . . ,L,(1)

xs,li (t) =
d∑
j=1

γsij ·A
s,l
ij · x

s,l
j (t− 1) + ηs,li (t), t= 1, . . . , Tl,(2)

where cs,li is an unknown parameter for standardizing activity of different regions;
γsij is an indicator with 1 indicating the presence of the directed connection from
region j to region i in the directed brain network of subject s and 0 for the absence;
As,lij s are coefficients; and ηs,li (t) and εs,li (t) are error terms with mean zero.

We use the first-order MARSS to model directed connectivity among many brain
regions, because it is robust to the model error and data error and also is parsimo-
nious in terms of the number of free parameters for characterizing directed connec-
tivity between many regions (Li et al., 2021).

We use indicators, γsijs, to distinguish nonzero directed connections from zero
ones. Model (1) and (2) distinguishes two connections in different directions between
every pair of regions i and j by using two different indicators, γsij and γsji, to repre-
sent the two connections in two different directions between the two regions. For
example, suppose only γsij is identified to be nonzero, and γsji is identified to be zero.
We deem that a directed connection exists only from region j to region i in subject
s’s brain network and not otherwise.

Following standard practice in connectivity studies (Sato et al., 2010; Hayden
et al., 2016), we fix γsii = 0 for i= 1, . . . , d, s= 1, . . . , S. We let indicators for directed
connections, γsij , be shared in common across different fMRI runs for each subject.
This is because fMRI data in separate runs for each subject were collected under the
same condition, and it is intuitive to assume that the subject’s brain networks are
identical in these runs. Moreover, this assumption enables combining data informa-
tion across multiple fMRI runs to estimate directed networks more efficiently than
otherwise.

Under the MARSS, (1) and (2), we focus on identifying nonzero γsijs for all pairs of
regions i and j and for every subject s. That is, we identify directed connections by
using the MARSS as a working model to detect the existence of temporal dependen-
cies between activity of different regions. Detecting the existence of temporal depen-
dencies is robust to the model error and data noise, as demonstrated in the literature
(Li et al., 2021) and the simulation study (Section 4). For mathematical simplicity and

computational efficiency, we let ηs,li (t)
i.i.d∼ N(0,1) and εs,li (t)

i.i.d∼ N(0, τ2
i ).
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2.2. Bayesian Hierarchical Model for Modular Networks. Given that the modular
brain network is tied with functional specialization and integration of the brain
(Newman, 2006; Sporns, 2011), we impose modularity on γsijs by using a mixed
membership stochastic blockmodel (MMSB) (Fienberg, Meyer and Wasserman, 1985;
Airoldi et al., 2008; Nowicki and Snijders, 2001; Durante and Dunson, 2014) prior for
γsijs. The details of the prior specification are given below.

Let K be the pre-specified number of modules. Let ms
i = (ms

i1, . . . ,m
s
iK)′ label the

module of region i in the directed brain network of subject s. Only one element of
ms

i equals 1 and the rest elements equal 0. For example,ms
ik = 1 indicates that region

i is in module k in the brain network of subject s. Let Bk1k2 , k1, k2 = 1, . . . ,K , denote
the prior probability of a nonzero directed connection from a region in module k2

to another region in module k1. Let B be a K × K matrix with entries Bk1k2 for
k1, k2 = 1, . . . ,K .
Prior specification for modularity. The prior for whole-brain directed networks with
modularity is a joint distribution for γsijs (indicators), ms

i s (module labels), and B
(the probability matrix) as follows:

γsij |ms
i ,m

s
j ,B

ind∼ Bernoulli((ms
i )
′ B ms

j), i, j = 1, . . . , d;(3)

ms
i

i.i.d∼ Multinomial(1;pi1, . . . , piK) and (pi1, . . . , piK)∼Dirichlet( 1
K1K);(4)

Bkk
i.i.d∼ Uniform(l0,1) and Bk1k2

i.i.d∼ Uniform(0, u0), k1, k2 = 1, . . . ,K, k1 6= k2;(5)

where l0 and u0 are pre-specified constants between 0 and 1, and 1K is a K-
dimensional vector with all entries equal to 1.

The distribution (3) specifies prior probabilities for nonzero directed connections
between regions either in the same module (referred to as within-module directed
connections) or in different modules (referred to as between-module directed con-
nections) in the directed brain network of subject s. For example, if ms

ik1
= 1 and

ms
jk2

= 1, the prior probability of the nonzero directed connection from region j to
regions i equals (ms

i )
′ B ms

j =Bk1k2 .
We let l0 = 0.9 and u0 = 0.1 to reflect the prior belief that within-module con-

nections are dense while between-module connections are much sparser (Park and
Friston, 2013). We make the difference between the lower bound, l0, and the upper
bound, u0, large to facilitate module identification. The practice of module identifi-
cation rests on the difference between the densities of within-module and between-
module connections. The closer are the densities of within-module and between-
module connections, the more difficult it is to identify modules correctly. We choose
a high lower bound (i.e., l0 = 0.9) for prior distributions of within-module connec-
tions to identify the most closely connected regions. More importantly, we found
that if we lower the upper bound l0 from 0.9 to 0.8, many modules would be merged
together because a lower l0 allows for regions with fewer connections to form one
module. On the other hand, the upper bound u0 = 0.1 is chosen because it is the
upper bound threshold used by Power et al. (2011) to detect connections. Through
both simulation and real data analysis, we found that the combination of l0 = 0.9
and u0 = 0.1 leads to the most accurate module identification: the regions identified
to be in the same module have the same brain functions according to the functional
atlas provided by Power et al. (2011).

The MMSB prior, (3)-(5), allows for each region to be in different modules and
have different directed connections in different subjects’ brain networks and thus,
accommodates the variation of brain networks across subjects. Under the MARSS,
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(1) and (2), with the MMSB prior (3)-(5) (BMMSB), our goal is to identify modules
and directed connections by estimating the population-mean probabilities of region i
in different modules, pi = (pi1, . . . , piK), posterior probabilities of ms

i s, and posterior
probabilities of γsijs, for all regions i, j = 1, . . . d and subjects s= 1, . . . , S.

3. Variational Bayesian Inference. The standard Bayesian approach that uses
Markov chain Monte Carlo simulations is computationally infeasible to estimate the
above Bayesian model for the massive fMRI data under study (the number of re-
gions, d, is in hundreds, the number of subjects, S, is almost one thousand, and the
number of time series points, Tl, is in thousands). We develop a variational Bayesian
approach to estimate the above Bayesian model and address the computational chal-
lenge, as explained below.

We first estimate xs,l(t) using the standard MARSS (Holmes, Ward and Wills,
2012) (where γsijs in (2) are all fixed at 1) instead of using a fully Bayesian approach.
State functions xs,l(t) are not of interest in our study, but their estimation through a
fully Bayesian approach is computationally time consuming. In addition, we found
that estimated xs,l(t) under the standard MARSS (Holmes, Ward and Wills, 2012)
are similar to those under the fully Bayesian approach.

Let As,l be a d× d matrix whose (i, j)th entry is As,lij , i, j = 1, . . . , d and l= 1, . . . ,L,
Xs,l = {xs,l(0), . . . ,xs,l(T )}, and X = {Xs,l, s = 1, . . . , S, l = 1, . . . ,L}. Let Θ denote
all the unknown parameters:

Θ = {γsij , As,l, ms
i , pi, B, i, j = 1, . . . , d, l= 1, . . . ,L, s= 1, . . . , S}.

We treat estimated X as given data, and the posterior distribution of Θ given X is

(6) p(Θ|X)∝
S∏
s=1

L∏
l=1

{ Tl∏
t=1

p
(
xs,l(t)

∣∣∣xs,l(t− 1),Θ
)}
· p(Θ),

where p
(
xs,l(t)

∣∣∣xs,l(t− 1),Θ
)

is derived using the state model (2). The prior distri-
bution for the parameters γsij , m

s
i , and B is the MMSB prior, (3), (4), and (5). We

assign normal priors to Asijs:

(7) As,lij
i.i.d∼ N(0, ξ2

0),

where ξ0 is a pre-specified positive constant. Explicit formulas of the posterior dis-
tribution, p(Θ|X) are provided in Section 1 of the Supplementary Material (Wang
et al., 2022).

We use a variational method to approximate the posterior distribution p(Θ|X)
in (6). Variational methods (Blei, Kucukelbir and McAuliffe, 2017) have received
enormous popularity in estimating graphical models and network models (Fien-
berg, Meyer and Wasserman, 1985; Airoldi et al., 2008; Nowicki and Snijders, 2001;
Durante and Dunson, 2014; Wainwright and Jordan, 2008). However, existing varia-
tional methods are mainly for observed networks whose network edges are known.
We here address a more complicated problem: simultaneously identifying directed
network edges (i.e., directed connections) and modules based on multivariate time
series measurements of activity of many networks nodes. Our new variational
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method is based on a new factorized approximation to p(Θ|X). The factorized dis-
tribution is given as follows:

q(Θ|V) =
S∏
s=1

d∏
i,j=1,i 6=j

q1(As,1
ij , . . . ,A

s,L
ij , γ

s
ij |Φs

ij) ·
S∏
s=1

d∏
i=1

q2(ms
i |Φms

i ) ·
d∏
i=1

q3(pi|Φpi)

·
K∏

k1,k2=1

q4(Bk1k2 |ΦBk1k2 ),

(8)

where V = {Φs
ij ,Φ

ms
i ,Φpi ,ΦBk1k2 , s= 1, . . . , S, i, j = 1, . . . , d, k1, k2 = 1, . . . ,K} is the

set of free variational parameters.
The variational distribution factors in the factorized distribution (8) and their vari-

ational parameters are given below:
q1(γsij |Φs

ij) = Bernoulli(γsij |αsij);

q1(As,1
ij , . . . ,A

s,L
ij |γ

s
ij ,Φ

s
ij) =

L∏
l=1

q1(As,l
ij |γ

s
ij , u

s,l
ij ,w

s,l
ij ),

where q1(As,l
ij |γ

s
ij , u

s,l
ij ,w

s,l
ij ) =

{
Normal(As,l

ij |u
s,l
ij ,w

s,l
ij ) if γsij = 1,

Normal(As,l
ij |0, ξ2

0) if γsij = 0;

q2(ms
i |Φms

i ) = Multinomial(ms
i |1,Φms

i );

q3(pi|Φpi) = Dirichlet(pi|Φpi);

q4(Bk1k2 |ΦBk1k2 ) =

{
Beta(Bk1k1 |β1,k1 , β2,k1) · 1{l0<Bk1k2<1} if k1 = k2,

Beta(Bk1k2 |β1,k1k2 , β2,k1k2) · 1{0<Bk1k2<u0} if k1 6= k2;

where Φs
ij = {αsij , u

s,l
ij ,w

s,l
ij , l= 1, . . . ,L}, Φms

i = {Φms
i

1 , . . . ,Φ
ms
i

K }, Φpi = {Φpi
1 , . . . ,Φ

pi
K},

ΦBk1k2 = {β1,k1 , β2,k1} for k1 = k2, ΦBk1k2 = {β1,k1k2 , β2,k1k2} for k1 6= k2, and 1ℵ(x) is
an indicator function which equals 1 if x falls into the set ℵ and 0 otherwise.

A crucial novelty of our variational Bayesian method is to let γsij and As,lij be de-
pendent on each other in our approximating distribution (8). Although using a fully
factorized approximating distribution is more common in practice, it is not effective
in approximating our target distribution, p(Θ|X). A fully factorized approximating
distribution is based on the mean field theory (Chaikin, Lubensky and Witten, 1995).
The theory suggests that a joint distribution of many random variables that are de-
pendent on each other can be effectively approximated by a product of independent
distributions of these variables. However, the mean field approximation is usually
effective when each random variable depends on many other variables and pairwise
dependencies between variables are weak. In the posterior distribution (6), each As,lij
mostly depends on γsij , and a full factorization of the posterior distributions of As,lij
and γsij leads to a large bias. Therefore, we keep the dependence structure between
As,lij and γsij in the approximating distribution (8). A similar idea is implemented in
structured variational inference (Hoffman and Blei, 2015).

We determine the values of V through iteratively minimizing the KL-divergence
between the approximation distribution q(Θ|V) and the posterior distribution
p(Θ|X):

KL (q(Θ|V)||p(Θ|X)) =−Eq

(
log

p(Θ|X)

q(Θ|V)

)
.
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To provide a flexible Bayesian model, we let K = d and the initial values of the
variational parameters for module labels, Φ

ms
i

i = 1 and Φ
ms
i

k = 0 for k 6= i, i= 1, . . . , d,
and s = 1, . . . , S. The initial values of the other variational parameters and detailed
steps in the iterative optimization algorithm for evaluating variational parameters
are provided in Section 2 of the Supplementary Material (Wang et al., 2022).

The following provides the pseudocode of the iterative optimization algorithm.
Let KLt denotes the KL-divergence value calculated (up to an arbitrary additive
constant) at the t iteration and MKL = max{KLt − KLt−1, t = 1, . . .}, where MKL

can be estimated based on the algorithm outputs in the first a few iterations.

Algorithm 1 Pseudocode for variational Bayesian method.

Let t= 0 and set initial values V0.
Let V=V0.
while t= 0 or KLt −KLt−1 > 0.01×MKL do
Let t= t+ 1.
1. For s= 1, . . . , S and i= 1, . . . , d:

Update Φms
i in V based on the rest parameters in V.

2. For s= 1, . . . , S and i, j = 1, . . . , d:
Update Φsij in V based on the rest parameters in V.

3. For i= 1, . . . , d:
Update Φpi in V based on the rest parameters in V.

4. For k1, k2 = 1, . . . ,K :
Update ΦBk1k2 in V based on the rest parameters in V.

5. Let Vt =V.
6. If t= 1:

Let MKL =KLt −KLt−1.
7. Else if t > 1 and MKL <KLt −KLt−1:

Let MKL =KLt −KLt−1.
end while

We use KLt − KLt−1 to examine the convergence of the iterative optimization
algorithm, because the KL-divergence can be evaluated only up to an arbitrary ad-
ditive constant, and KLt−KLt−1 does not involve this constant. The algorithm ter-
minates when KLt −KLt−1 is smaller than 1% of the maximum possible change in
the KL-divergence, i.e., MKL.

We employ parallel computing (Rosenthal, 2000; Kontoghiorghes, 2005) to imple-
ment the above iterative algorithm. The use of parallel computing with a 16-core
node can reduce the computation time by 90%. The analysis of two runs of fMRI
data of 1000 subjects by our method takes no more than 20 hours.

3.1. Posterior Inference. Posterior inference of directed brain networks is equiva-
lent to identifying directed connections and modules in these networks. In the fol-
lowing, we elaborate the procedures to identifying modules and directed connec-
tions using the variational parameters output from the above variational Bayesian
method.

3.1.1. Identification of Modules in Subject-Specific Brain Networks. Intuitively, given
an appropriate number of modules K , one can use the variational parameters Φms

i

output from the variational Bayesian method to determine the module for region i
in the directed brain network of subject s. However, we let K = d instead of using a
carefully chosen K . This is because even though we can identify the correct number
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of modules, it is difficult to correctly specify initial module assignments for many
regions under study with K much smaller than d. As pointed out by Blei, Kucukel-
bir and McAuliffe (2017), the KL-divergence, KL (q(Θ|V)||p(Θ|X)), is a nonconvex
optimization function, and its optimization is sensitive to initial values. If K is as-
signed a value much smaller than d, many regions would be incorrectly assigned to
the same module in the initial step, resulting in the algorithm being stuck at a local
mode that can be far from the truth. In contrast, in our initialization with K = d,
we let each region be in one unique module and separate from each other. This ini-
tialization lets the algorithm automatically group regions and find the right module
for every region. We found that this approach is more reliable than using the initial
values where many regions could be incorrectly grouped together. Moreover, this
initialization avoids the issues of identifying the correct number of modules and
rerunning the algorithm.

On the other hand, because K = d is much larger than the true number of mod-
ules, bringing uncertainty in determining the module of each region i, the probabil-
ities, Φ

ms
i

k , of each region i in different modules are small. More importantly, allow-
ing for each region to be in different modules in different subjects’ networks in the
Bayesian model can lead to an identifiability issue because the same module can be
given different labels in different subjects’ networks.

We propose the following computationally fast steps to determine an appropriate
number of modules and reevaluate posterior probabilities of each region i in dif-
ferent modules. We first identify the regions that are in the same module in most
subjects’ directed brain networks. We use these regions to determine modules and
the number of modules, based on which, we reevaluate the probabilities of module
assignments for the other regions. In the following, Φ denotes the variational param-
eter output of the variational Bayesian method, and a notation θ̂ denotes a quantity
evaluated based on the output.

1. Evaluate the probability of two regions, i and j, in the same module in the di-
rected brain network of each subject s by Ω̂s

ij =
∑d
k=1 Φ

ms
i

k ·Φms
j

k .
2. Two regions i and j are deemed to be in the same module in the directed brain

network of subject s if Ω̂s
ij >

1
d .

3. Identify sets of regions, Ck, k = 1, . . . , K̂ , that satisfy three conditions: (1) Each Ck
contains at least two regions; (2) for any two regions ik1 , ik2 ∈Ck, either ik1 and ik2
are in the same module in more than 50% of subjects’ directed brain networks or
there exists a third region jk ∈ Ck such that ik1 with jk and jk with ik2 are in the
same module in more than 50% of subjects’ directed brain networks; and (3) for
any two regions in two different sets, i ∈Ck, j ∈Ck̃, and k 6= k̃, i and j are different
regions, and i and j are in the same module in fewer than 50% of subjects’ brain
networks.

4. For all regions ik ∈Ck, let m̂s
ik,k

= 1 and p̂ik,k = 1. That is, we deem all the regions
in Ck to be in the same module k in directed brain networks of all subjects.

In Step 1, we calculate Ω̂s
ij based on the factorized distribution (8), in which the

distributions of module labels for regions i and j are independent. In Step 2, the
value 1/d is calculated based on the worst scenario where the probabilities of module
labels of either region i or region j are identical for K = d modules (i.e., Φ

ms
i

k or
Φ
ms
j

k = 1/d for all k = 1, . . . , d). Step 3 identifies groups of regions that are in the same
module in most subjects’ brain networks. Step 4 lets the K̂ sets of regions identified
in Step 3 define K̂ modules.
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Given the K̂ region sets, Ck, k = 1, . . . , K̂ , we reevaluate the variational parame-
ters of module labels for each region i 6∈ {Ck, k = 1, . . . , K̂} and subject s. Specifically,
we let

Φ̂
ms
i

k =
d∑

h=1

Φ
ms
i

h ·max{Φ
ms
ik

h , ik ∈Ck} for k = 1, . . . , K̂,

and Φ̂
ms
i

k = 0 for k = K̂ + 1, . . . , d. The above calculates the probability of region i

in the same module as any one of the regions in Ck. Then we standardize Φ̂
ms
i

k ,
k = 1, . . . , K̂ , such that their sum equals 1 for every region i and subject s.

We use Φ̂ms
i = {Φ̂ms

i

1 , . . . , Φ̂
ms
i

K̂
} to identify the module of region i in the directed

brain network of subject s. If region i’s largest module probability, Φ̂
ms
i

k(1)
, is larger

than 50%, we deem that region i falls into module k(1) in the directed brain network
of subject s; otherwise, region i does not fall into any module.

3.1.2. Identification of Modules in the Population-Mean Brain Network. Given mod-
ules identified in S subjects’ directed brain networks, we reevaluate the population-
mean probability of region i in module k, p̂ik, by the percentage of the S subjects’
networks in which region i is in module k:

p̂ik =
1

S

S∑
s=1

1
Φ̂

ms
i

k >50%
.

After normalizing p̂i = {p̂i1, . . . , p̂iK̂} to have a sum one, we use it to determine
the module(s) of each region i in the population-mean directed brain network. The
module assignment of each region i falls into 4 scenarios. (1) If the largest module
probability of region i, p̂ik(1) , is larger than 50%, we deem that region i falls into
module k(1) only; (2) if p̂ik(1) ≤ 50% and p̂ik(1) + p̂ik(2) > 50%, we deem that region i
falls into modules k(1) and k(2); (3) if p̂ik(1) + p̂ik(2) ≤ 50% and p̂ik(1) + p̂ik(2) + p̂ik(3) >
50%, we deem that region i falls into three modules, k(1), k(2), and k(3); (4) if p̂ik(1) +
p̂ik(2) + p̂ik(3) ≤ 50%, we deem that the modules of region i are unidentifiable in the
population-mean brain network. We consider each region to be in no more than three
different modules (corresponding to three different specialized functions) for easy
scientific interpretation and to detect the most significant modules for each region.
We also found that very few regions can fall into more than 2 different modules.

3.2. The Choice of Hyperparameter. The hyperparameter ξ2
0 can affect modules

identified in each subject’s network. Specifically, if ξ2
0 is too small, the values of As,lij s

would be tiny, which will result in small differences between the posterior proba-
bilities of including (γsij = 1) and excluding (γsij = 0) directed connections as well as
small differences between the posterior probabilities of each region being in different
modules. On the other hand, if ξ2

0 is too large, As,lij s tend to be large, and indicators,
γsijs, tend to be 0 regardless of regions’ module assignments. The probabilities of
each region being in different modules are also similar. Overall, either too large or
too small ξ2

0 makes it difficult to identify correct modules for each region.
Considering that modules identified affect the number of free parameters in the

state model (2), we propose a Bayesian information criterion (BIC) to choose ξ2
0 .

For easy calculation of BIC, we treat all regions in the same module to be pair-
wisely connected and regions in different modules are disconnected. Given ξ2

0 , let
Csi,ξ20 be the set of regions (excluding region i) in the same module as region i in the
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directed brain network of subject s. If region i does not fall into any module in the
directed brain network of subject s (i.e., Φ̂

ms
i

k(1)
< 50%), Csi,ξ20 = ∅. Given X, let L̂s,li,ξ20 de-

note the maximized value of the likelihood function of the state model (also a linear
regression model), xs,li (t) =

∑
j∈Cs

i,ξ2
0

As,lij · x
s,l
j (t− 1) + ηs,li (t) for t = 1, . . . , Tl. Let κξ20

be the total number of free parameters in these S · d · L regression models. Our BIC
is

BIC(ξ2
0) = κξ20 · log(

L∑
l=1

S · d · Tl)− 2
S∑
s=1

d∑
i=1

L∑
l=1

log(L̂s,li,ξ20
).

We choose the ξ2
0 that leads to the smallest BIC(ξ2

0) and more than 90% of regions
having identifiable modules.

Note that the above procedure allows us to analyze the massive fMRI data just
once for each candidate hyperparameter ξ2

0 and thus, requires much less computa-
tional time to determine the appropriate number of modules.

3.3. Directed Connection Identification. We use αsij to identify directed connections
in the subject-specific directed network for each subject s and use average posterior
probabilities ᾱij =

∑S
s=1α

s
ij/S, i, j = 1, . . . , d to identify directed connections in the

population-mean directed network.
Because it is hard to know the density of true between-module connections ver-

sus within-module connections, we followed the approach by Power et al. (2011)
and selected directed connections with top posterior probabilities ranging from top
1% to top 10%. We present directed connections with the highest possible posterior
probabilities for easy visualization and minimal false selections while ensuring the
number of selected between-module directed connections is no smaller than 1% of
the number of selected within-module connections. The connections selected by this
approach are easy to visualize and scientifically interpretable.

4. Simulation Studies. We used SPM software (Penny et al., 2011) to simulate
fMRI data from the DCM (Friston, Harrison and Penny, 2003) because it is the most
popular model for directed connectivity. The DCM uses many complex ordinary
differential equations (ODEs) in the state model to characterize interactions between
neuronal activity in different regions and uses ODEs in the observation model to link
regions’ neuronal activity to their blood oxygen level dependent signals. We first
used the ODEs in the state model of the DCM to generate state functions, xs,l(t),
of d = 264 regions in each of two (l = 1,2) 15-minute runs for each subject s. The
state functions xs,1(t) and xs,2(t) in two different runs were generated using the
same ODEs but different initial values so that xs,1(t) 6= xs,2(t), which is consistent
with real data from different fMRI runs of each subject. Then we used the ODEs
in the observation model of the DCM to generate fMRI data ys,l(t), in which the
observation noise εs,lj (t) of each region j is chosen such that the signal-to-noise ratio
var(xs,lj (t))/var(εs,lj (t)) = 1 for j = 1, . . . , d= 264, s= 1, . . . , S = 1000, and l= 1,2. The
chosen signal-to-noise ratio is considered low in the literature (Frässle et al., 2018).
Note that simulation from the ODE model, DCM, generates continuous data. We
kept T = 1200 equally distanced data points with repetition time (TR) of 0.72s as our
simulated data, the same as the TR of real fMRI data under study.

Figure 1(a) shows simulated network patterns. We used the BrainNet Viewer (Xia,
Wang and He, 2013) to visualize networks. The number of modules and the sizes of
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(a) Simulated Network (b) ROC Curves T = 1200

(c) Estimated Mean Network for T = 1200 (d) ROC Curves T = 600

Figure 1: The simulation study of data generated from the DCM. (a) The simulated network pat-
terns. Nodes in the same color are in the same module in all subjects’ brain networks. Nodes with
two colors are in different modules in different subjects’ brain networks. Edges in dark red indicate
between-module directed connections from an upper module to a lower module. Edges in green in-
dicate between-module connections from a lower module to an upper module. (b) ROC curves for
directed connections identified by six network methods. (c) The estimated population-mean directed
network. (d) ROC curves for directed connections identified by six network methods based on data
with T = 600 time points.

modules were chosen to be close to those of functional systems determined by Power
et al. (2011). Network nodes in the same color are in the same module in all subjects’
networks. Network nodes with two colors are in one module (in one color) in 50%
of subjects’ networks and in the other module (in the other color) in the other 50% of
subjects’ networks. All network nodes in the same module are pairwise connected.
We show only between-module connections in figures for easy visualization. Edges
in dark red indicate between-module directed connections from an upper module to
a lower module. Edges in green indicate between-module connections from a lower
module to an upper module. The between-module connections are chosen to make
easy visualization of the network. The number of between-module connections is
around 5% of that of within-module connections.
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Using simulated directed connections (i.e., directed network edges) of all the sub-
jects as the truth, we calculated the false positive rate (FPRs) and true positive rate
(TPRs) of selecting directed network edges for all the subjects based on different
thresholds for αsijs. For comparison, we examined the FPRs and TPRs of popular
competing methods, including the third-order MAR with L1 regularization (imple-
mented by the R package BigVAR (Nicholson, Matteson and Bien, 2017)), denoted
by MAR(L1), transfer entropy (TE) (Sabesan et al., 2009; Schreiber, 2000; Vicente
et al., 2011), partial directed coherence (PDC) (Baccalá and Sameshima, 2001), short-
time direct transfer function (SdDTF) (Korzeniewska et al., 2014), and graphical lasso
(Glasso) (Friedman, Hastie and Tibshirani, 2014; Witten, Friedman and Simon, 2011).
Figure 1(b) shows the ROC curves of TPRs vs. FPRs for these methods. We also tried
the sparse regression DCM (Frässle et al., 2018), but it is computationally infeasible
for identifying 1000 subjects’ whole-brain directed networks. We also performed the
simulation study 100 times independently and found that the accuracy of directed
connection selection is stable across different simulations. The lowest value of the
area under the curve (AUC) is 0.82, and the highest one is 0.89. In summary, the pro-
posed variational Bayesian method with the MMSB prior (BMMSB) outperformed
the other methods by achieving the largest area under the ROC curve.

Figure 1(c) shows the estimated population-mean directed network. Our method
successfully identified nine modules and the existence of two groups of regions with
mixed module memberships. The TPR and FPR of selecting within-module directed
connections are 66.3% and 0%, respectively. The TPR and FPR of selecting between-
module connections are 40.3% and 2.6%, respectively.

The TPR of selecting within-module connections is much higher than that of
between-module connections for several reasons. First, module identification, simi-
lar to clustering, is subjective, so our selection of directed connections does not take
into account identified modules and is purely based on posterior probabilities of di-
rected connections (i.e., αsijs). Since the number of true within-module connections
is much larger than that of true between-module connections, and the number of
candidate between-module connections is much greater than the total number of
true directed connections, within-module connections are much easier to detect and
their posterior probabilities tend to be much higher than those of between-module
connections. Second, since the number of within-module connections is much larger
than between-module connections, connection selection is more towards selecting
within-module connections so that the overall accuracy of connection selection is
high. Third, since the number of void connections is large, a slightly lower threshold
for directed connections can lead to many selections. These selections not only could
contain many false selections but also lead to a network result that is difficult to in-
terpret scientifically. Consequently, we used a high threshold for αsijs to avoid many
false selections, which also rendered only a few between-module connections se-
lected. Overall, the proposed method outperformed existing methods by achieving
a higher TPR and a low FPR.

We also analyzed the first half of the simulated fMRI data with T = 600 to as-
sess the effect of the data length on the accuracy of connection selection. Figure 1(d)
shows ROC curves of six competing methods. The proposed variational method has
a slightly smaller AUC (0.85 compared to the AUC of 0.88 with T = 1200) in identify-
ing directed connections with fewer data points and still outperformed other meth-
ods.

We performed another simulation study to compare the proposed variational
Bayesian method and a fully Bayesian approach based on simulated fMRI data in
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d= 62 regions of a single subject. The ROC curve of the variational method is only
slightly lower than that of the fully Bayesian approach: The AUC of the former
method is 0.82, and the AUC of the latter method is 0.87. This result suggests that
the variational method can effectively approximate the target posterior distribution.
More details of this simulation study can be found in Section 3 of the Supplementary
Material (Wang et al., 2022).

5. An Application to an fMRI Study. We analyzed resting-state fMRI data
of S = 995 healthy subjects in total from the Human Connectome Project (HCP)
(Van Essen et al., 2013). All subjects went through 1-hour (in total) resting-state fMRI
scanning at 3T (Smith et al., 2013) in two pairs of 15-min runs on each of two sepa-
rate days. The data of each subject per run consist of functional images at T = 1200
time points with a repetition time (TR) of 0.72s and a 2-mm isotropic spatial resolu-
tion. The resting-state fMRI data downloaded from the HCP had been preprocessed
according to the HCP minimal preprocessing pipeline. More detailed descriptions
of the preprocessing steps, including optimized spatial preprocessing and temporal
preprocessing, can be found in the paper by Glasser et al. (2013); Smith et al. (2013).
Following the practice by Power et al. (2011), we extracted fMRI time series from
the 10mm-diameter sphere of each of 264 regions of interest using the DPABI tool-
box (Yan et al., 2016). We averaged fMRI time series of all voxels in each region j
from each run l for each subject s and standardized the average time series to have
mean zero and variance one. The ensuing time series was {ys,lj (1), . . . , ys,lj (Tl)} in our
analysis.

We applied the proposed variational method to analyze subjects’ fMRI data in
L= 2 runs collected on separate days. Therefore, we analyzed two sets of fMRI data
independently. The first set contains S = 995 subjects’ resting-state fMRI data in the
two runs with phase encoding in the left-to-right direction, and the second set con-
tains the same subjects’ resting-state fMRI data in the two runs with phase encoding
in the right-to-left direction.

We present four major results of our directed network analysis of the fMRI data.
First, modules identified by our method are accordant with functional brain systems
specialized for various functions. The accordance between the identified modules
and functional brain systems provides validation of module identification by our
directed network method. Second, we revealed directed connections between brain
modules with different specialized functions. These identified between-module di-
rected connections are consistent with those discovered in low-dimensional directed
network analysis of task-based fMRI data in just a few regions of interest. Third, we
uncovered several regions that can be in different modules in different subjects’ net-
works. This result suggests that these regions can be involved in more than one brain
function. Fourth, we evaluated reproducibility by comparing the results of the inde-
pendent analysis of the two fMRI data sets. We found both modules and directed
connections identified are similar across different data sets. We elaborate on these
results below.
Identification of modules. Our method identified modules specialized for different
functions, though the method did not use spatial information of regions. Figure 2
shows the identified population-mean whole-brain directed network in axial and
sagittal views using the first fMRI data set. The identified modules are specialized for
functions including visual (several blue colors), hand somatosensory-motor (green),
face somatosensory-motor (light green), cingulo-opercular task control (patriarch),
auditory (fuchsia), default mode (dark red, red, light red, and pink), fronto-parietal
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(a) Axial View (b) Sagittal View

Figure 2: The Identified Population-Mean Whole-Brain Directed Networks in Axial (a) and Sagittal
(b) Views based on the First fMRI Data Set. The nodes in the same color are identified to be in the same
module. The nodes with more than one color are identified to be in more than one module. Black edges
represent directed connections between modules that have distinct functions. The directed connections
selected have top 1% posterior probabilities.

task control (yellow), salience (purple), memory retrieval (gray), ventral attention
(blue green), and dorsal attention (navy) functions. These results are consistent with
the functional brain systems reported in the literature (Power et al., 2011). Note that
the modules with “unknown" labels correspond to several subsystems identified
by Power et al. (2011) to have fewer than four regions. The functional identities of
these subsystems are unknown in the literature. Our method not only successfully
separated these regions from other modules but also identified them to share similar
functions.

Note that the above modules with different specialized functions are also called
networks in the literature, for example, the default model network, cingulo-
opercular task control network, and salience network. To keep terminology con-
sistent in this paper, we use modules instead of networks.

Our method revealed several smaller modules in large functional brain systems,
such as the visual network and the default mode network. These results align with
the literature that the visual network (Zeki et al., 1991) and the default mode network
(Buckner, Andrews-Hanna and Schacter, 2008) consist of several functionally and
anatomically different brain areas. Moreover, the identified small visual modules
overlap with several known functional subsystems in the visual network, including
medial visual area (visual module A), occipital pole (visual module B), and lateral
visual areas (visual modules C and D) (Ikeda et al., 2022). Our method is also able
to identify modules of posterior cingulate and retrosplenial cortices (PCC & RSC),
anterior cingulate and medial prefrontal cortices (ACC & mPFC), inferior parietal
lobe and lateral temporal cortex (IPL & LTC) and other regions in the default mode
network (Raichle, 2015; Davey, Pujol and Harrison, 2016). The correspondence be-
tween identified modules with known functional brain systems and the high over-
lap between identified small modules in the large visual and default mode systems
with known subdivisions of these two systems all provide evidence that our method
can successfully detect subtle functional differences between subdivisions in a large
functional system and reveal the hierarchical modular organization of the brain.
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Identification of directed connections. Most of the identified directed connections
are between regions in the same module or between modules with similar brain
functions (e.g., between the four visual modules). These connections are dense, as
expected. For easy visualization of directed connections between different function-
ally specialized modules, we show only directed connections between modules with
different specialized functions in Figure 2.

We discovered that the strongest between-module directed connections are be-
tween the auditory module and somatosensory-motor modules. Although existing
studies have already reported strong functional connectivity between motor and
auditory brain areas (He et al., 2009; Mesulam, 1998; De Luca et al., 2006), our
results further suggest directed connections are between the face somatosensory-
motor module and the auditory module. We also observed additional connections
between the cingulo-opercular task control module and the salience module. This
result is in accordance with the finding that the salience module engages the cingulo-
opercular task-control regions (Seeley, 2019). In summary, our method can reliably
detect directed connections between functionally specialized brain modules based
on whole-brain resting-state fMRI data. In contrast, existing studies typically rely on
tasked-based fMRI data to evaluate directed connections between only a few regions
of interest with different specialized functions.

Another interesting finding regarding directed connections between modules is
that the default mode module has no connection with other modules. This result
is consistent with the abundant literature (Smith et al., 2009) that the default-mode
network tends to be nonactive when the brain is during the performance of various
goal-directed tasks (Gusnard and Raichle, 2001; Raichle et al., 2001).
Variation of directed brain networks across subjects. We examined the variation of
directed brain networks across subjects. Figure 3 shows the whole-brain directed
network of one subject. Identified modules in subject-specific directed brain net-
works are generally similar to those in the population-mean directed networks, al-
though small modules in large functional brain systems, such as the default mode
and somatosensory-motor modules, have moderate variations across subjects. We
also found that regions in auditory, visual, somatosensory-motor, cingulo-opercular
task control, and salience modules can fall into different modules in different sub-
jects’ networks, as demonstrated by nodes with more than one color in Figure 2.
These results are consistent with the findings in the literature (Power et al., 2011;
Riedl et al., 2016; Seeley et al., 2007; Deshpande et al., 2008; Bushara, Grafman and
Hallett, 2001) that these modules have strong functional connectivity between them.
Our results additionally suggest that regions in these modules can be involved in
different brain functions.

The most considerable variation in directed brain networks across subjects lies
in between-module directed connections. As shown in Figure 3, subject-specific di-
rected brain networks have more between-module connections than the population-
mean directed network. We consider several potential reasons for these results. First,
the specialized functions of brain regions tend to be consistent across healthy sub-
jects, while connectivity between regions vary dramatically across subjects during
resting state. Second, fMRI data of each subject have a weak signal-to-noise ra-
tio, leading to large variances of estimated subject-specific directed brain networks.
Third, estimating directed connectivity between many regions is susceptible to mul-
ticollinearity, while identifying modules, similar to clustering, is much less affected
by multicollinearity. Therefore, identified functionally specialized modules tend to
be stable across subjects, while identified connections between modules have much
greater variations across subjects.
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(a) Axial View (b) Sagittal View

Figure 3: The Identified Whole-Brain Directed Networks of One Subject in Axial (a) and Sagittal
(b) Views. The nodes in the same color are identified to be in the same module. Black edges represent
directed connections between modules that have distinct functions. The directed connections selected
have top 1% posterior probabilities.

Reproducibility. We applied the variational Bayesian method to the same subjects’
second resting-state fMRI data set and obtained the second estimated population-
mean directed brain network shown in Figure 4. The network is similar to the first
population-mean brain network (shown in Figure 2) obtained by analyzing the same
subjects’ first fMRI data set.

We calculated overlap coefficients of identified modules in the two networks to
assess the reproducibility of our method. The overlap coefficient is defined as

overlap(S1, S2) =
|S1 ∩ S2|

min(|S1|, |S2|)
,

where S1 and S2 are two sets, e.g., modules of regions. Let S1 and S2 be the collec-
tion of all the modules identified in the first and second population-mean directed
brain networks, respectively. For each module S2 ∈ S2, its overlap coefficient with S1

is defined as maxS1∈S1
overlap(S1, S2). Similarly, we define the overlap coefficient of

each module S1 ∈ S1 with S2 as maxS2∈S2
overlap(S1, S2). The mean of the overlap

coefficients of modules in S2 with S1 is 80%; and the mean of the overlap coeffi-
cients of modules in S1 with S2 is 82%. The overlap coefficient of identified directed
connections in the two population-mean networks is 92%.

We also examined the similarity between two estimated whole-brain directed net-
works for each subject. The average overlap coefficient of identified modules in
subject-specific brain networks is 81%, and the average overlap coefficient of identi-
fied directed connections is 76%. Again, directed connections have more variations
than modules across runs for reasons given above.

6. Discussion. We propose a new high-dimensional directed network method
for analyzing resting-state fMRI data of many subjects. The advantages of our new
method lie in three aspects. First, our model building exploits the principles of the
brain’s functional organization by characterizing both modules and directed connec-
tions in brain networks. Second, the new Bayesian model accommodates the varia-
tion of brain networks across subjects while enables integration of many subjects’
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(a) Axial View (b) Sagittal View

Figure 4: The Identified Population-Mean Whole-Brain Directed Networks in Axial (a) and Sagittal
(b) Views based on the Second fMRI Data Set. The nodes in the same color are identified to be in
the same module. The nodes with more than one color are identified to be in more than one module.
Black edges represent directed connections between modules that have distinct functions. The directed
connections selected have top 1% posterior probabilities.

data to estimate whole-brain directed networks. Third, the developed new varia-
tional Bayesian method can simultaneously identify modules and directed connec-
tions with both computational efficiency and estimation accuracy.

Setting the lower bound, l0, for prior probabilities of within-module connections
at a high value of 0.9 is necessary for several reasons. First, it is documented in the
literature that regions in the same subnetwork (called modules in our analysis) are
coactive (Cole, Smith and Beckmann, 2010). This co-activation leads to very strong
correlations (at values of almost 1) between these regions’ fMRI data. Second, fMRI
preprocessing steps can increase correlations of fMRI data in different regions (Gar-
gouri et al., 2018). Third, the large number of regions’ fMRI data under study brings
the multicollinearity issue when using a model to identify connections. Then setting
a high value for l0 can enable us to reduce the false selections due to the high corre-
lations caused by the second and third issues and identify truly strongly connected
regions. Fourth, we found that using a smaller value of l0 can render regions special-
ized for different functions incorrectly merged together because of the second and
third issues. Fifth, our choice of l0 has been implemented in the literature (Li et al.,
2021).

We used the first-order MARSS instead of higher-order ones to identify directed
directions for several reasons. First, the purpose of this study is to identify directed
connections by detecting the existence of temporal dependence between regions’
temporal activities rather than explaining fMRI data variation, fitting the data per-
fectly, or examining the extent of temporal dependence between regional activity.
The first-order MARSS is efficient in capturing the presence of temporal dependence.
Second, though a high-order MARSS may fit the data better, it contains many more
free parameters. Estimating these more parameters brings significantly more vari-
ances and uncertainty in identifying directed connections. Third, simulations per-
formed by Li et al. (2021) have demonstrated that the first-order MARSS can detect
directed connections with high accuracy for data generated from high-order MARSS.
We did similar simulations and obtained the same results. However, since the DCM
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is more distinct from the MARSS and arguably a generative model for fMRI, we pre-
sented simulation results based on the DCM. On the other hand, since our method is
focused on detecting temporal dependence using a parsimonious model, the method
does not differentiate between negative inhibitory relationships and positive excita-
tory relationships between regions. This analysis requires using more detailed mod-
els.

Evaluation of directed connections between functionally distinct areas is mainly
through low-dimensional directed network analysis of task-based fMRI data in only
a few regions of interest. Thus, these directed connectivity results are restricted
to fMRI studies with specifically designed tasks. In contrast, our method can reli-
ably detect directed connections between modules with different functions based on
whole-brain resting-state fMRI data. Our network results enhance our understand-
ing of the brain’s functional organization.

In future research, we will extend our method to model dynamic connectivity by
allowing indicators for directed connectivity to vary over time or assuming tran-
sition probabilities for directed connectivity. We will also develop the model for
task-based fMRI data, compare resting-state and task-based whole-brain directed
networks, and further investigate the variation of directed brain networks across
different tasks and conditions.
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This supplementary file explains the optimization steps for implementing the pro-
posed variational Bayesian algorithm.

Codes for Variational Bayesian Algorithm
This supplementary file contains MATLAB codes and the manual for using our tool-
box to implement the proposed variational Bayesian algorithm.
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